The population rate of change of West Virginia was -0.42% in 2018.

Population

Population Change

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Demographics and Population Datasets Involving West Virginia

  • API

    NYCHA Resident Data Book Summary

    data.cityofnewyork.us | Last Updated 2020-02-08T00:56:30.000Z

    Contains resident demographic data at a summary level as of January 1, 2019. The Resident Data Book is compiled to serve as an information source for queries involving resident demographic as well as a source of data for internal analysis. Statistics are compiled via HUD mandated annual income reviews involving NYCHA Staff and residents. Data is then aggregated and compiled by development. Each record pertains to a single public housing development.

  • API

    VDH-COVID-19-PublicUseDataset-Cases_By-Race-Ethnicity

    data.virginia.gov | Last Updated 2021-04-17T13:23:40.000Z

    This dataset includes the cumulative (total) number of COVID-19 cases, hospitalizations, and deaths for each health district in Virginia by report date and by race and ethnicity. This dataset was first published on June 15, 2020. The data set increases in size daily and as a result, the dataset may take longer to update; however, it is expected to be available by 12:00 noon daily. When you download the data set, the dates will be sorted in ascending order, meaning that the earliest date will be at the top. To see data for the most recent date, please scroll down to the bottom of the data set. The Virginia Department of Health’s Thomas Jefferson Health District (TJHD) will be renamed to Blue Ridge Health District (BRHD), effective January 2021. More information about this change can be found here: https://www.vdh.virginia.gov/blue-ridge/name-change/

  • API

    NCHS - Drug Poisoning Mortality by County: United States

    data.cdc.gov | Last Updated 2020-06-05T17:38:49.000Z

    This dataset describes drug poisoning deaths at the county level by selected demographic characteristics and includes age-adjusted death rates for drug poisoning from 1999 to 2015. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  • API

    Bronx Zip Population and Density

    bronx.lehman.cuny.edu | Last Updated 2012-10-21T14:06:17.000Z

    2010 Census Data on population, pop density, age and ethnicity per zip code

  • API

    Indicators of Anxiety or Depression Based on Reported Frequency of Symptoms During Last 7 Days

    data.cdc.gov | Last Updated 2021-04-07T14:33:03.000Z

    The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of Covid-19 on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely weekly estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, gender, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions,

  • API

    NCHS - Drug Poisoning Mortality by State: United States

    data.cdc.gov | Last Updated 2020-06-05T17:28:21.000Z

    This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning from 1999 to 2015. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  • API

    VDH-PublicUseDataset-NCHS-Population

    data.virginia.gov | Last Updated 2021-03-24T18:50:25.000Z

    This dataset includes population estimates for each Virginia locality by year, age group, sex, race and ethnicity. This estimates are produced by the National Center for Health Statistics (NCHS) within the Centers for Disease Control and Prevention (CDC), more information can be found here: https://www.cdc.gov/nchs/nvss/bridged_race.htm

  • API

    Health Opportunity Index

    data.virginia.gov | Last Updated 2020-09-21T16:36:42.000Z

    The Virginia Health Opportunity Index (HOI) is a group of indicators that provide broad insight into the overall opportunity Virginians have to live long and healthy lives based on the Social Determinants of Health. It is a hierarchical index that allows users to examine social determinants of health at multiple levels of detail in Virginia. It is made up of over 30 variables, combined into 13 indicators, grouped into four profiles, which are aggregated into a single Health Opportunity Index. For more information visualizations visit: https://apps.vdh.virginia.gov/omhhe/hoi/

  • API

    AmeriCorps Member Race and Ethnicity National Figures

    data.americorps.gov | Last Updated 2021-02-06T01:05:53.000Z

    This dataset represents the percent distribution of AmeriCorps member terms which started their service in calendar year 2019 by race and ethnicity. This report excludes AmeriCorps Seniors volunteers. Included are percentage distributions from the United States Census Bureau's 2010-2019 State Population Characteristics dataset.

  • API

    Social Vulnerability Index for Virginia by Census Tract, 2018

    data.virginia.gov | Last Updated 2021-02-22T20:18:07.000Z

    "ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) created Centers for Disease Control and Prevention Social Vulnerability Index (CDC SVI or simply SVI, hereafter) to help public health officials and emergency response planners identify and map the communities that will most likely need support before, during, and after a hazardous event. SVI indicates the relative vulnerability of every U.S. Census tract. Census tracts are subdivisions of counties for which the Census collects statistical data. SVI ranks the tracts on 15 social factors, including unemployment, minority status, and disability, and further groups them into four related themes. Thus, each tract receives a ranking for each Census variable and for each of the four themes, as well as an overall ranking." For more see https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2018.html