The median earnings of Sacramento County, CA was $33,297 in 2017.

Earnings and Gender

Earnings and Education

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Jobs and Earnings Datasets Involving Sacramento County, CA

  • API

    Summary Financial Information for State Authorities

    data.ny.gov | Last Updated 2019-06-10T18:03:16.000Z

    Public authorities are required by Section 2800 of Public Authorities Law to submit annual reports to the Authorities Budget Office that includes summary financial information. The dataset consists of information from the statement of net assets and the statement of revenues, expenses and change in net assets reported by State Authorities beginning with fiscal years ending in 2011.

  • API

    Summary Financial Information for Industrial Development Agencies

    data.ny.gov | Last Updated 2019-06-10T18:03:16.000Z

    Public authorities are required by Section 2800 of Public Authorities Law to submit annual reports to the Authorities Budget Office that includes summary financial information. The dataset consists of information from the statement of net assets and the statement of revenues, expenses and change in net assets reported by Industrial Development Agencies beginning with fiscal years ending in 2011.

  • API

    Summary Financial Information for Local Development Corporations

    data.ny.gov | Last Updated 2019-06-10T18:03:17.000Z

    Public authorities are required by Section 2800 of Public Authorities Law to submit annual reports to the Authorities Budget Office that includes summary financial information. The dataset consists of information from the statement of net assets and the statement of revenues, expenses and change in net assets reported by Local Development Corporations beginning with fiscal years ending in 2011.

  • API

    Summary Financial Information for Local Authorities

    data.ny.gov | Last Updated 2019-06-10T18:03:17.000Z

    Public authorities are required by Section 2800 of Public Authorities Law to submit annual reports to the Authorities Budget Office that includes summary financial information. The dataset consists of information from the statement of net assets and the statement of revenues, expenses and change in net assets reported by Local Authorities beginning with fiscal years ending in 2011.

  • API

    Quarterly Census of Employment and Wages (QCEW)

    data.edd.ca.gov | Last Updated 2019-05-29T22:28:52.000Z

    The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels.

  • API

    B-4A, Adjusted Gross Income Class Comparison, All Filing Statuses

    data.ftb.ca.gov | Last Updated 2019-06-06T13:47:06.000Z

    Adjusted gross income class statistics combined for all filing statuses for California residents personal income tax return data.

  • API

    Uninsured Population Census Data CY 2009-2014 Human Services

    data.pa.gov | Last Updated 2019-04-01T15:15:07.000Z

    This data is pulled from the U.S. Census website. This data is for years Calendar Years 2009-2014. Product: SAHIE File Layout Overview Small Area Health Insurance Estimates Program - SAHIE Filenames: SAHIE Text and SAHIE CSV files 2009 – 2014 Source: Small Area Health Insurance Estimates Program, U.S. Census Bureau. Internet Release Date: May 2016 Description: Model‐based Small Area Health Insurance Estimates (SAHIE) for Counties and States File Layout and Definitions The Small Area Health Insurance Estimates (SAHIE) program was created to develop model-based estimates of health insurance coverage for counties and states. This program builds on the work of the Small Area Income and Poverty Estimates (SAIPE) program. SAHIE is only source of single-year health insurance coverage estimates for all U.S. counties. For 2008-2014, SAHIE publishes STATE and COUNTY estimates of population with and without health insurance coverage, along with measures of uncertainty, for the full cross-classification of: •5 age categories: 0-64, 18-64, 21-64, 40-64, and 50-64 •3 sex categories: both sexes, male, and female •6 income categories: all incomes, as well as income-to-poverty ratio (IPR) categories 0-138%, 0-200%, 0-250%, 0-400%, and 138-400% of the poverty threshold •4 races/ethnicities (for states only): all races/ethnicities, White not Hispanic, Black not Hispanic, and Hispanic (any race). In addition, estimates for age category 0-18 by the income categories listed above are published. Each year’s estimates are adjusted so that, before rounding, the county estimates sum to their respective state totals and for key demographics the state estimates sum to the national ACS numbers insured and uninsured. This program is partially funded by the Centers for Disease Control and Prevention's (CDC), National Breast and Cervical Cancer Early Detection ProgramLink to a non-federal Web site (NBCCEDP). The CDC have a congressional mandate to provide screening services for breast and cervical cancer to low-income, uninsured, and underserved women through the NBCCEDP. Most state NBCCEDP programs define low-income as 200 or 250 percent of the poverty threshold. Also included are IPR categories relevant to the Affordable Care Act (ACA). In 2014, the ACA will help families gain access to health care by allowing Medicaid to cover families with incomes less than or equal to 138 percent of the poverty line. Families with incomes above the level needed to qualify for Medicaid, but less than or equal to 400 percent of the poverty line can receive tax credits that will help them pay for health coverage in the new health insurance exchanges. We welcome your feedback as we continue to research and improve our estimation methods. The SAHIE program's age model methodology and estimates have undergone internal U.S. Census Bureau review as well as external review. See the SAHIE Methodological Review page for more details and a summary of the comments and our response. The SAHIE program models health insurance coverage by combining survey data from several sources, including: •The American Community Survey (ACS) •Demographic population estimates •Aggregated federal tax returns •Participation records for the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp program •County Business Patterns •Medicaid •Children's Health Insurance Program (CHIP) participation records •Census 2010 Margin of error (MOE). Some ACS products provide an MOE instead of confidence intervals. An MOE is the difference between an estimate and its upper or lower confidence bounds. Confidence bounds can be created by adding the margin of error to the estimate (for the upper bound) and subtracting the margin of error from the estimate (for the lower bound). All published ACS margins of error are based on a 90-percent confidence level.