The population count of Van Zandt County, TX was 54,368 in 2018.

Population

Population Change

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Demographics and Population Datasets Involving Van Zandt County, TX

  • API

    Concentrations of Protected Classes from Analysis of Impediments

    data.austintexas.gov | Last Updated 2019-07-29T17:26:04.000Z

    A new component of fair housing studies is an analysis of the opportunities residents are afforded in “racially or ethnically concentrated areas of poverty,” also called RCAPs or ECAPs. An RCAP or ECAP is a neighborhood with significant concentrations of extreme poverty and minority populations. HUD’s definition of an RCAP/ECAP is: • A Census tract that has a non‐white population of 50 percent or more AND a poverty rate of 40 percent or more; OR • A Census tract that has a non‐white population of 50 percent or more AND the poverty rate is three times the average tract poverty rate for the metro/micro area, whichever is lower. Why the 40 percent threshold? The RCAP/ECAP definition is not meant to suggest that a slightly‐lower‐than‐40 percent poverty rate is ideal or acceptable. The threshold was borne out of research that concluded a 40 percent poverty rate was the point at which a neighborhood became significantly socially and economically challenged. Conversely, research has shown that areas with up to 14 percent of poverty have no noticeable effect on community opportunity. (See Section II in City of Austin’s 2015 Analysis of Impediments to Fair Housing Choice: http://www.austintexas.gov/sites/default/files/files/NHCD/Reports_Publications/1Analysis_Impediments_for_web.pdf) This dataset provides socioeconomic data on protected classes from the 2008-2012 American Community Survey on census tracts in Austin’s city limits and designates which of those tracts are considered RCAPs or ECAPs based on these socioeconomic characteristics. A map of the census tracts designated as RCAPs or ECAPs is attached to this dataset and downloadable as a pdf (see below).

  • API

    2010 Census/ACS Basic Block Group Data

    data.kcmo.org | Last Updated 2013-02-08T20:03:40.000Z

    basic characteristics of people and housing for individual 2010 census block groups

  • API

    2010 Census/ACS Basic Census Tract Data

    data.kcmo.org | Last Updated 2014-06-10T19:42:31.000Z

    basic characteristics of people and housing for individual 2010 census tract portions inside or outside KCMO

  • API

    2010 Census/ACS Basic Block Group Data

    data.kcmo.org | Last Updated 2014-06-10T19:28:50.000Z

    basic characteristics of people and housing for individual 2010 census block groups

  • API

    2010 Census/ACS Basic Census Tract Data

    data.kcmo.org | Last Updated 2019-04-19T19:05:00.000Z

    basic characteristics of people and housing for individual 2010 census tract portions inside or outside KCMO

  • API

    2010 Census/ACS Basic Block Group Data

    data.kcmo.org | Last Updated 2019-04-19T18:51:48.000Z

    basic characteristics of people and housing for individual 2010 census block groups

  • API

    2010 Census/ACS Detailed Block Group Data

    data.kcmo.org | Last Updated 2013-02-08T20:10:26.000Z

    detailed characteristics of people and housing for individual 2010 census block groups

  • API

    2010 Census/ACS Detailed Block Group Data

    data.kcmo.org | Last Updated 2014-06-10T19:34:03.000Z

    detailed characteristics of people and housing for individual 2010 census block groups

  • API

    Point In Time Homeless Survey Data

    data.sonomacounty.ca.gov | Last Updated 2019-07-12T18:26:35.000Z

    The County of Sonoma conducts an annual homeless count for the entire county. The survey data is derived from a sample of about 600 homeless persons countywide per year. The resulting information is statistically reliable only for the county as a whole, not for individual locations. The exception is the City of Santa Rosa, where the sample taken within the city is large enough to be predictive of the overall homeless population in that city.

  • API

    Travel Decision Survey 2019

    data.sfgov.org | Last Updated 2020-01-31T22:45:39.000Z

    **Please refer to the downloadable XLSX attachment (http://bit.ly/SFMTATravelSurvey2019) for the complete dataset, metadata, and instructions for use.** This workbook provides data and data dictionaries for the SFMTA 2019 Travel Decision Survey. On behalf of San Francisco Municipal Transportation Agency (SFMTA), Corey, Canapary & Galanis (CC&G) undertook a Mode Share Survey within the City and County of San Francisco as well as the eight surrounding Bay Area counties of Alameda, Contra Costa, San Mateo, Marin, Santa Clara, Napa, Sonoma and Solano. The primary goals of this study were to: • Assess percent mode share for travel in San Francisco for evaluation of the SFMTA Strategic Objective 2.2: Mode Share target of 80% sustainable travel by 2030. • Evaluate the above statement based on the following parameters: number of trips to, from, and within San Francisco by Bay Area residents. Trips by visitors to the Bay Area and for commercial purposes are not included. • Provide additional trip details, including trip purpose for each trip in the mode share question series. • Collect demographic data on the population of Bay Area residents who travel to, from, and within San Francisco. • Collect data on travel behavior and opinions that support other SFMTA strategy and project evaluation needs. The survey was conducted as a telephone study among 801 Bay Area residents aged 18 and older. Interviewing was conducted in English, Spanish, Mandarin, Cantonese, and Tagalog. Surveying was conducted via random digit dial (RDD) and cell phone sample. All survey datasets incorporate respondent weighting based on age and home location; utilize the “weight” field when appropriate in your analysis. The survey period for this survey is as follows: 2019: May - August 2019 The margin of error is related to sample size (n). For the total sample, the margin of error is 3.3% for a confidence level of 95%. When looking at subsets of the data, such as just the SF population, just the female population, or just the population of people who bicycle, the sample size decreases and the margin of error increases. Below is a guide of the margin of error for different samples sizes. Be cautious in making conclusions based off of small sample sizes. At the 95% confidence level is: • n = 801(Total Sample). Margin of error = +/- 3.3% • n = 400. Margin of error = +/- 4.85% • n = 100. Margin of error = +/- 9.80%