The population count of Bedford city, VA was 6,052 in 2013.

Population

Population Change

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Demographics and Population Datasets Involving Bedford city, VA

  • API

    NCHS - Drug Poisoning Mortality by County: United States

    data.cdc.gov | Last Updated 2017-08-28T15:09:46.000Z

    This dataset describes drug poisoning deaths at the county level by selected demographic characteristics and includes age-adjusted death rates for drug poisoning from 1999 to 2015. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  • API

    NYCHA Resident Data Book Summary

    data.cityofnewyork.us | Last Updated 2019-07-19T21:02:11.000Z

    Contains resident demographic data at a summary level as of January 1, 2019. The Resident Data Book is compiled to serve as an information source for queries involving resident demographic as well as a source of data for internal analysis. Statistics are compiled via HUD mandated annual income reviews involving NYCHA Staff and residents. Data is then aggregated and compiled by development. Each record pertains to a single public housing development.

  • API

    NCHS - Drug Poisoning Mortality by State: United States

    data.cdc.gov | Last Updated 2019-11-21T17:41:37.000Z

    This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning from 1999 to 2015. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  • API

    NCHS - Drug Poisoning Mortality by County: United States

    data.cdc.gov | Last Updated 2019-11-21T17:40:12.000Z

    This dataset contains model-based county estimates for drug-poisoning mortality. Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2016 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances. Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates for 1999-2015 have been updated, and may differ slightly from previously published estimates. Differences are expected to be minimal, and may result from different county boundaries used in this release (see below) and from the inclusion of an additional year of data. Previously published estimates can be found here for comparison.(6) Estimates are unavailable for Broomfield County, Colorado, and Denali County, Alaska, before 2003 (7,8). Additionally, Clifton Forge County, Virginia only appears on the mortality files prior to 2003, while Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. These counties were therefore merged with adjacent counties where necessary to create a consistent set of geographic units across the time period. County boundaries are largely consistent with the vintage 2005-2007 bridged-race population file geographies, with the modifications noted previously (7,8). REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm. 2. CDC. CDC Wonder: Underlying cause of death 1999–2016. Available from: http://wonder.cdc.gov/wonder/help/ucd.html. 3. Rossen LM, Khan D, Warner M. Trends and geographic patterns in drug-poisoning death rates in the U.S., 1999–2009. Am J Prev Med 45(6):e19–25. 2013. 4. Rossen LM, Khan D, Warner M. Hot spots in mortality from drug poisoning in the United States, 2007–2009. Health Place 26:14–20. 2014. 5. Rossen LM, Khan D, Hamilton B, Warner M. Spatiotemporal variation in selected health outcomes from the National Vital Statistics System. Presented at: 2015 National Conference on Health Statistics, August 25, 2015, Bethesda, MD. Available from: http://www.cdc.gov/nchs/ppt/nchs2015/Rossen_Tuesday_WhiteOak_BB3.pdf. 6. Rossen LM, Bastian B, Warner M, and Khan D. NCHS – Drug Poisoning Mortality by County: United States, 1999-2015. Available from: https://data.cdc.gov/NCHS/NCHS-Drug-Poisoning-Mortality-by-County-United-Sta/pbkm-d27e. 7. National Center for Health Statistics. County geog

  • API

    NCHS - Teen Birth Rates for Age Group 15-19 in the United States by County

    data.cdc.gov | Last Updated 2018-06-04T13:33:56.000Z

    This data set contains estimated teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) by county and year. DEFINITIONS Estimated teen birth rate: Model-based estimates of teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) for a specific county and year. Estimated county teen birth rates were obtained using the methods described elsewhere (1,2,3,4). These annual county-level teen birth estimates “borrow strength” across counties and years to generate accurate estimates where data are sparse due to small population size (1,2,3,4). The inferential method uses information—including the estimated teen birth rates from neighboring counties across years and the associated explanatory variables—to provide a stable estimate of the county teen birth rate. Median teen birth rate: The middle value of the estimated teen birth rates for the age group 15–19 for counties in a state. Bayesian credible intervals: A range of values within which there is a 95% probability that the actual teen birth rate will fall, based on the observed teen births data and the model. NOTES Data on the number of live births for women aged 15–19 years were extracted from the National Center for Health Statistics’ (NCHS) National Vital Statistics System birth data files for 2003–2015 (5). Population estimates were extracted from the files containing intercensal and postcensal bridged-race population estimates provided by NCHS. For each year, the July population estimates were used, with the exception of the year of the decennial census, 2010, for which the April estimates were used. Hierarchical Bayesian space–time models were used to generate hierarchical Bayesian estimates of county teen birth rates for each year during 2003–2015 (1,2,3,4). The Bayesian analogue of the frequentist confidence interval is defined as the Bayesian credible interval. A 100*(1-α)% Bayesian credible interval for an unknown parameter vector θ and observed data vector y is a subset C of parameter space Ф such that 1-α≤P({C│y})=∫p{θ │y}dθ, where integration is performed over the set and is replaced by summation for discrete components of θ. The probability that θ lies in C given the observed data y is at least (1- α) (6). County borders in Alaska changed, and new counties were formed and others were merged, during 2003–2015. These changes were reflected in the population files but not in the natality files. For this reason, two counties in Alaska were collapsed so that the birth and population counts were comparable. Additionally, Kalawao County, a remote island county in Hawaii, recorded no births, and census estimates indicated a denominator of 0 (i.e., no females between the ages of 15 and 19 years residing in the county from 2003 through 2015). For this reason, Kalawao County was removed from the analysis. Also , Bedford City, Virginia, was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. For consistency, Bedford City was merged with Bedford County, Virginia, for the entire 2003–2015 period. Final analysis was conducted on 3,137 counties for each year from 2003 through 2015. County boundaries are consistent with the vintage 2005–2007 bridged-race population file geographies (7). SOURCES National Center for Health Statistics. Vital statistics data available online, Natality all-county files. Hyattsville, MD. Published annually. For details about file release and access policy, see NCHS data release and access policy for micro-data and compressed vital statistics files, available from: http://www.cdc.gov/nchs/nvss/dvs_data_release.htm. For natality public-use files, see vital statistics data available online, available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. National Center for Health Statistics. U.S. Census populations with bridged race categories. Estimated population data available. Postcensal and intercensal files. Hyattsville, MD

  • API

    Bronx Zip Population and Density

    bronx.lehman.cuny.edu | Last Updated 2012-10-21T14:06:17.000Z

    2010 Census Data on population, pop density, age and ethnicity per zip code

  • API

    Census Demographics 2010

    data.baltimorecity.gov | Last Updated 2017-02-06T04:44:33.000Z

    BNIA-JFI analyzed data from the Census to provide greater understandingof the socioeconomic and demographic characteristics of the residents of the City and its neighborhoods . BNIA-JFI also used this data as denominators for many of the Vital Signs indicators allowing for data to be normalized and rates to be computed. Census data analyzed by BNIA-JFI is grouped into the following categories: population, race and ethnicity; households and families; and income.

  • API

    Labor Force Demographic Characteristics by Commuting Mode Split: 2012 - 2016

    data.cambridgema.gov | Last Updated 2019-09-17T17:16:51.000Z

    This data set provides demographic and journey to work characteristics of the Cambridge Labor Force by primary mode of their journey to work. Attributes include age, presence of children, racial and ethnic minority status, vehicles available, time leaving home, time spent traveling, and annual household income. The data set originates from a special tabulation of the American Community Survey - the 2012 - 2016 version of the Census Transportation Planning Products (CTPP). The Cambridge Labor Force consist of all persons who live in Cambridge who work or are actively seeking employment. For more information on Journey to Work data in Cambridge, please see the full 2015 report (https://www.cambridgema.gov/~/media/Files/CDD/FactsandMaps/profiles/moving_forward_20150930.ashx?la=en).

  • API

    Concentrations of Protected Classes from Analysis of Impediments

    data.austintexas.gov | Last Updated 2019-07-29T17:26:04.000Z

    A new component of fair housing studies is an analysis of the opportunities residents are afforded in “racially or ethnically concentrated areas of poverty,” also called RCAPs or ECAPs. An RCAP or ECAP is a neighborhood with significant concentrations of extreme poverty and minority populations. HUD’s definition of an RCAP/ECAP is: • A Census tract that has a non‐white population of 50 percent or more AND a poverty rate of 40 percent or more; OR • A Census tract that has a non‐white population of 50 percent or more AND the poverty rate is three times the average tract poverty rate for the metro/micro area, whichever is lower. Why the 40 percent threshold? The RCAP/ECAP definition is not meant to suggest that a slightly‐lower‐than‐40 percent poverty rate is ideal or acceptable. The threshold was borne out of research that concluded a 40 percent poverty rate was the point at which a neighborhood became significantly socially and economically challenged. Conversely, research has shown that areas with up to 14 percent of poverty have no noticeable effect on community opportunity. (See Section II in City of Austin’s 2015 Analysis of Impediments to Fair Housing Choice: http://www.austintexas.gov/sites/default/files/files/NHCD/Reports_Publications/1Analysis_Impediments_for_web.pdf) This dataset provides socioeconomic data on protected classes from the 2008-2012 American Community Survey on census tracts in Austin’s city limits and designates which of those tracts are considered RCAPs or ECAPs based on these socioeconomic characteristics. A map of the census tracts designated as RCAPs or ECAPs is attached to this dataset and downloadable as a pdf (see below).

  • API

    2010 Census/ACS Basic Block Group Data

    data.kcmo.org | Last Updated 2013-02-08T20:03:40.000Z

    basic characteristics of people and housing for individual 2010 census block groups