The population density of Center Point, AL was 2,746 in 2015.

Population Density

Population Density is computed by dividing the total population by Land Area Per Square Mile.

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Geographic and Population Datasets Involving Center Point, AL

  • API

    Deer Tick Surveillance: Adults (Oct to Dec) excluding Powassan virus: Beginning 2008

    health.data.ny.gov | Last Updated 2022-03-23T14:44:39.000Z

    This dataset provides the results from collecting and testing adult deer ticks, also known as blacklegged ticks, or by their scientific name <i>Ixodes scapularis</i>. Collection and testing take place across New York State (excluding New York City) from October to December, when adult deer ticks are most commonly seen. Adult deer ticks are individually tested for different bacteria and parasites, which includes the bacteria responsible for Lyme disease. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases. These data only provide adult tick infections at a precise location and at one point in time. Both measures, tick population density and percentage, of ticks infected with the specified bacteria or parasite can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county. Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.

  • API

    Deer Tick Surveillance: Nymphs (May to Sept) excluding Powassan virus: Beginning 2008

    health.data.ny.gov | Last Updated 2022-03-23T14:44:41.000Z

    This dataset provides the results from collecting and testing nymph deer ticks, also known as blacklegged ticks, or by their scientific name <i>Ixodes scapularis</i>. Collection and testing take place across New York State (excluding New York City) from May to September, when nymph deer ticks are most commonly seen. Nymph deer ticks are individually tested for different bacteria and parasites, which includes the bacteria responsible for Lyme disease. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases. These data only provide nymph tick infections at a precise location and at one point in time. Both measures, tick population density and percentage, of ticks infected with the specified bacteria or parasite can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county. Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.

  • API

    Deer Tick Surveillance: Adults (Oct to Dec) Powassan Virus Only: Beginning 2009

    health.data.ny.gov | Last Updated 2022-03-23T14:44:42.000Z

    This dataset provides the results from collecting and testing adult deer ticks, also known as blacklegged ticks, or by their scientific name Ixodes scapularis. Collection and testing take place across New York State (excluding New York City) from October to December, when adult deer ticks are most commonly seen. Adult deer ticks are tested in “pools”, or groups of up to ten adult ticks per pool, for the Powassan virus, also known as Deer tick virus. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases. These data only provide adult tick minimum infection rates at a precise location and at a point in time. Both measures, tick population density and minimum infection percentages, can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county. Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.

  • API

    Deer Tick Surveillance: Nymphs (May to Sept) Powassan Virus Only: Beginning 2009

    health.data.ny.gov | Last Updated 2022-03-23T14:44:45.000Z

    This dataset provides the results from collecting and testing nymph deer ticks, also known as blacklegged ticks, or by their scientific name <i>Ixodes scapularis</i>. Collection and testing take place across New York State (excluding New York City) from May to September, when nymph deer ticks are most commonly seen. Nymph deer ticks are tested in “pools”, or groups of up to ten adult ticks per pool, for the Powassan virus, also known as Deer tick virus. These data should simply be used to educate people that there is a risk of coming in contact with ticks and tick-borne diseases. These data only provide nymph tick minimum infection rates at a precise location and at one point in time. Both measures, tick population density and minimum infection percentages, can vary greatly within a very small area and within a county. These data should not be used to broadly predict disease risk for a county. Further below on this page you can find links to tick prevention tips, a video on how to safely remove a tick, and more datasets with tick testing results. Interactive charts and maps provide an easier way to view the data.

  • API

    U.S. Chronic Disease Indicators (CDI)

    chronicdata.cdc.gov | Last Updated 2022-03-24T09:48:24.000Z

    CDC's Division of Population Health provides cross-cutting set of 124 indicators that were developed by consensus and that allows states and territories and large metropolitan areas to uniformly define, collect, and report chronic disease data that are important to public health practice and available for states, territories and large metropolitan areas. In addition to providing access to state-specific indicator data, the CDI web site serves as a gateway to additional information and data resources.

  • API

    PLACES: Local Data for Better Health, Census Tract Data 2021 release

    chronicdata.cdc.gov | Last Updated 2021-12-01T19:58:31.000Z

    This dataset contains model-based census tract-level estimates for the PLACES 2021 release. PLACES is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. The dataset includes estimates for 29 measures: 4 chronic disease-related health risk behaviors, 13 health outcomes, 3 health status, and 9 on use of preventive services. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population data, and American Community Survey (ACS) 2015–019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS because the relevant questions are only asked every other year in the BRFSS. More information about the methodology can be found at www.cdc.gov/places.

  • API

    PLACES: Local Data for Better Health, County Data 2021 release

    chronicdata.cdc.gov | Last Updated 2021-12-01T19:16:29.000Z

    This dataset contains model-based county-level estimates for the PLACES 2021 release. PLACES is the expansion of the original 500 Cities Project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. The dataset includes estimates for 29 measures: 4 chronic disease-related health risk behaviors, 13 health outcomes, 3 health status, and 9 on using preventive services. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2019 or 2018 county population estimate data, and American Community Survey (ACS) 2015–2019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS because the relevant questions are only asked every other year in the BRFSS. More information about the methodology can be found at www.cdc.gov/places.

  • API

    Health Opportunity Index

    data.virginia.gov | Last Updated 2021-10-07T19:00:36.000Z

    The Virginia Health Opportunity Index (HOI) is a group of indicators that provide broad insight into the overall opportunity Virginians have to live long and healthy lives based on the Social Determinants of Health. It is a hierarchical index that allows users to examine social determinants of health at multiple levels of detail in Virginia. It is made up of over 30 variables, combined into 13 indicators, grouped into four profiles, which are aggregated into a single Health Opportunity Index. For more information visualizations visit: https://apps.vdh.virginia.gov/omhhe/hoi/

  • API

    Vaccine Hesitancy for COVID-19: County and local estimates

    data.cdc.gov | Last Updated 2021-06-17T20:27:47.000Z

    Due to the change in the survey instrument regarding intention to vaccinate, our estimates for “hesitant or unsure” or “hesitant” derived from April 14-26, 2021, are not directly comparable with prior Household Pulse Survey data and should not be used to examine trends in hesitancy. To support state and local communication and outreach efforts, ASPE developed state, county, and sub-state level predictions of hesitancy rates (https://aspe.hhs.gov/pdf-report/vaccine-hesitancy) using the most recently available federal survey data. We estimate hesitancy rates at the state level using the U.S. Census Bureau’s Household Pulse Survey (HPS) (https://www.census.gov/programs-surveys/household-pulse-survey.html) data and utilize the estimated values to predict hesitancy rates at the Public Use Microdata Areas (PUMA) level using the Census Bureau’s 2019 American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS)(https://www.census.gov/programs-surveys/acs/microdata.html). To create county-level estimates, we used a PUMA-to-county crosswalk from the Missouri Census Data Center(https://mcdc.missouri.edu/applications/geocorr2014.html). PUMAs spanning multiple counties had their estimates apportioned across those counties based on overall 2010 Census populations. The HPS is nationally representative and includes information on U.S. residents’ intentions to receive the COVID-19 vaccine when available, as well as other sociodemographic and geographic (state, region and metropolitan statistical areas) information. The ACS is a nationally representative survey, and it provides key sociodemographic and geographic (state, region, PUMAs, county) information. We utilized data for the survey collection period May 26, 2021 – June 7, 2021, which the HPS refers to as Week 31.. PUMA COVID-19 Hesitancy Data - https://data.cdc.gov/Vaccinations/Vaccine-Hesitancy-for-COVID-19-Public-Use-Microdat/djj9-kh3p

  • API

    Population Health Measures: Age-Adjusted Mortality Rates

    data.montgomerycountymd.gov | Last Updated 2015-06-17T16:53:22.000Z

    Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.