The population count of Bay Point, CA was 25,165 in 2018.

Population

Population Change

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Demographics and Population Datasets Involving Bay Point, CA

  • API

    San Mateo County And California Crime Rates 2000-2014

    performance.smcgov.org | Last Updated 2016-08-31T20:40:07.000Z

    Violent and property crime rates per 100,000 population for San Mateo County and the State of California. The total crimes used to calculate the rates for San Mateo County include data from: Sheriff's Department Unincorporated, Atherton, Belmont, Brisbane, Broadmoor, Burlingame, Colma, Daly City, East Palo Alto, Foster City, Half Moon Bay, Hillsborough, Menlo Park, Millbrae, Pacifica, Redwood City, San Bruno, San Carlos, San Mateo, South San Francisco, Bay Area DPR, BART, Union Pacific Railroad, and CA Highway Patrol.

  • API

    Vital Signs: Life Expectancy – by ZIP Code

    data.bayareametro.gov | Last Updated 2018-07-06T18:05:06.000Z

    VITAL SIGNS INDICATOR Life Expectancy (EQ6) FULL MEASURE NAME Life Expectancy LAST UPDATED April 2017 DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time. DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/ U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov CONTACT INFORMATION vitalsigns.info@mtc.ca.gov METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population. Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly im

  • API

    Vital Signs: Income (Median by Place of Residence) – Bay Area

    data.bayareametro.gov | Last Updated 2019-08-13T16:17:34.000Z

    VITAL SIGNS INDICATOR Income (EC4) FULL MEASURE NAME Household income by place of residence LAST UPDATED May 2019 DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis. DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income. Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  • API

    Economic Demographics

    data.orcities.org | Last Updated 2017-01-09T17:17:43.000Z

    Data from the American Communities Survey 2014. This data includes information on household income, city industries composition, and class of workers.

  • API

    Vital Signs: Income (Median by Place of Residence) - by city

    data.bayareametro.gov | Last Updated 2019-08-13T16:16:34.000Z

    VITAL SIGNS INDICATOR Income (EC4) FULL MEASURE NAME Household income by place of residence LAST UPDATED May 2019 DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis. DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income. Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  • API

    Chicago COVID-19 Community Vulnerability Index (CCVI)

    data.cityofchicago.org | Last Updated 2022-02-03T23:22:50.000Z

    The Chicago CCVI identifies communities that have been disproportionately affected by COVID-19 and are vulnerable to barriers to COVID-19 vaccine uptake​. Vulnerability is defined as a combination of sociodemographic factors, epidemiological factors​, occupational factors​, and cumulative COVID-19 burden. The 10 components of the index include COVID-19 specific risk factors and outcomes and social factors known to be associated with social vulnerability in the context of emergency preparedness. The CCVI is derived from ranking values of the components by Chicago Community Area, then synthesizing them into a single composite weighted score. The higher the score, the more vulnerable the geographic area. ZIP Code CCVI is included to enable comparison with other COVID-19 data available on the Chicago Data Portal. Some elements of the CCVI are not available by ZIP Code. To create ZIP Code CCVI, the proportion of the ZIP Code population contributed by each Community Areas was determined. The apportioned populations were then weighted by the Community Area CCVI score and averaged to determine a ZIP Code CCVI score. The COVID-19 Community Vulnerability Index (CCVI) is adapted and modified from a Surgo Ventures collaboration (https://precisionforcovid.org/ccvi) and the CDC Social Vulnerability Index​. ZIP Codes are based on ZIP Code Tabulation Areas (ZCTAs) developed by the U.S. Census Bureau. For full documentation see: https://www.chicago.gov/content/dam/city/sites/covid/reports/012521/Community_Vulnerability_Index_012521.pdf

  • API

    Vital Signs: Income (Median by Place of Residence) – by tract

    data.bayareametro.gov | Last Updated 2019-08-13T16:18:03.000Z

    VITAL SIGNS INDICATOR Income (EC4) FULL MEASURE NAME Household income by place of residence LAST UPDATED May 2019 DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis. DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income. Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  • API

    Vital Signs: Income (Median by Place of Residence) – by county

    data.bayareametro.gov | Last Updated 2019-08-13T16:16:49.000Z

    VITAL SIGNS INDICATOR Income (EC4) FULL MEASURE NAME Household income by place of residence LAST UPDATED May 2019 DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis. DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income. Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.

  • API

    Vital Signs: Life Expectancy – by county

    data.bayareametro.gov | Last Updated 2018-07-06T18:05:04.000Z

    VITAL SIGNS INDICATOR Life Expectancy (EQ6) FULL MEASURE NAME Life Expectancy LAST UPDATED April 2017 DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time. DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/ CONTACT INFORMATION vitalsigns.info@mtc.ca.gov METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population. Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area. Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip

  • API

    Vital Signs: Life Expectancy – Bay Area

    data.bayareametro.gov | Last Updated 2018-07-06T18:05:05.000Z

    VITAL SIGNS INDICATOR Life Expectancy (EQ6) FULL MEASURE NAME Life Expectancy LAST UPDATED April 2017 DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time. DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/ CONTACT INFORMATION vitalsigns.info@mtc.ca.gov METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population. Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area. Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip