The population count of Redwood City, CA was 85,217 in 2018.

Population

Population Change

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Demographics and Population Datasets Involving Redwood City, CA

  • API

    San Mateo County And California Crime Rates 2000-2014

    performance.smcgov.org | Last Updated 2016-08-31T20:40:07.000Z

    Violent and property crime rates per 100,000 population for San Mateo County and the State of California. The total crimes used to calculate the rates for San Mateo County include data from: Sheriff's Department Unincorporated, Atherton, Belmont, Brisbane, Broadmoor, Burlingame, Colma, Daly City, East Palo Alto, Foster City, Half Moon Bay, Hillsborough, Menlo Park, Millbrae, Pacifica, Redwood City, San Bruno, San Carlos, San Mateo, South San Francisco, Bay Area DPR, BART, Union Pacific Railroad, and CA Highway Patrol.

  • API

    NYCHA Resident Data Book Summary

    data.cityofnewyork.us | Last Updated 2020-02-08T00:56:30.000Z

    Contains resident demographic data at a summary level as of January 1, 2019. The Resident Data Book is compiled to serve as an information source for queries involving resident demographic as well as a source of data for internal analysis. Statistics are compiled via HUD mandated annual income reviews involving NYCHA Staff and residents. Data is then aggregated and compiled by development. Each record pertains to a single public housing development.

  • API

    Napa County and California Population Totals 2011-2020

    data.countyofnapa.org | Last Updated 2023-07-26T16:19:55.000Z

    Data Source: CA Department of Finance Data: Population estimates for January 1, 2011, through January 1, 2020. The population estimates benchmark for April 1, 2010 is also provided. Citation: State of California, Department of Finance, E-4 Population Estimates for Cities, Counties, and the State, 2011-2020, with 2010 Census Benchmark. Sacramento, California, May 2022. For detailed information on methodology and other data considerations, visit: https://dof.ca.gov/Forecasting/Demographics/Estimates/e-4-population-estimates-for-cities-counties-and-the-state-2011-2020-with-2010-census-benchmark-new/

  • API

    Bronx Zip Population and Density

    bronx.lehman.cuny.edu | Last Updated 2012-10-21T14:06:17.000Z

    2010 Census Data on population, pop density, age and ethnicity per zip code

  • API

    Labor Force Demographic Characteristics by Commuting Mode Split: 2012 - 2016

    data.cambridgema.gov | Last Updated 2024-05-06T21:33:09.000Z

    This data set provides demographic and journey to work characteristics of the Cambridge Labor Force by primary mode of their journey to work. Attributes include age, presence of children, racial and ethnic minority status, vehicles available, time leaving home, time spent traveling, and annual household income. The data set originates from a special tabulation of the American Community Survey - the 2012 - 2016 version of the Census Transportation Planning Products (CTPP). The Cambridge Labor Force consist of all persons who live in Cambridge who work or are actively seeking employment. For more information on Journey to Work data in Cambridge, please see the report Moving Forward: 2020 - https://www.cambridgema.gov/-/media/Files/CDD/FactsandMaps/profiles/demo_moving_forward_2020.pdf

  • API

    Workforce Demographic Characteristics by Commuting Mode Split : 2012 - 2016

    data.cambridgema.gov | Last Updated 2024-05-06T21:39:43.000Z

    This data set provides demographic and journey to work characteristics of the Cambridge Workforce by primary mode of their journey to work. Attributes include age, presence of children, racial and ethnic minority status, vehicles available, time arriving at work, time spent traveling, and annual household income. The data set originates from a special tabulation of the American Community Survey - the 2012 - 2016 version of the Census Transportation Planning Products (CTPP). The Cambridge Workforce consist of all persons who work in Cambridge, regardless of home location. For more information on Journey to Work data in Cambridge, please see the report Moving Forward: 2020 - https://www.cambridgema.gov/-/media/Files/CDD/FactsandMaps/profiles/demo_moving_forward_2020.pdf

  • API

    Population Projections for Napa County

    data.countyofnapa.org | Last Updated 2024-02-21T23:24:18.000Z

    Data Source: CA Department of Finance, Demographic Research Unit Report P-3: Population Projections, California, 2010-2060 (Baseline 2019 Population Projections; Vintage 2020 Release). Sacramento: California. July 2021. This data biography shares the how, who, what, where, when, and why about this dataset. We, the epidemiology team at Napa County Health and Human Services Agency, Public Health Division, created it to help you understand where the data we analyze and share comes from. If you have any further questions, we can be reached at epidemiology@countyofnapa.org. Data dashboard featuring this data: Napa County Demographics https://data.countyofnapa.org/stories/s/bu3n-fytj How was the data collected? Population projections use the following demographic balancing equation: Current Population = Previous Population + (Births - Deaths) +Net Migration Previous Population: the starting point for the population projection estimates is the 2020 US Census, informed by the Population Estimates Program data. Births and Deaths: birth and death totals came from the California Department of Public Health, Vital Statistics Branch, which maintains birth and death records for California. Net Migration: multiple sources of administrative records were used to estimate net migration, including driver’s license address changes, IRS tax return data, Medicare and Medi-Cal enrollment, federal immigration reports, elementary school enrollments, and group quarters population. Who was included and excluded from the data? Previous Population: The goal of the US Census is to reflect all populations residing in a given geographic area. Results of two analyses done by the US Census Bureau showed that the 2020 Census total population counts were consistent with recent counts despite the challenges added by the pandemic. However, some populations were undercounted (the Black or African American population, the American Indian or Alaska Native population living on a reservation, the Hispanic or Latino population, and people who reported being of Some Other Race), and some were overcounted (the Non-Hispanic White population and the Asian population). Children, especially children younger than 4, were also undercounted. Births and Deaths: Birth records include all people who are born in California as well as births to California residents that happened out of state. Death records include people who died while in California, as well as deaths of California residents that occurred out of state. Because birth and death record data comes from a registration process, the demographic information provided may not be accurate or complete. Net Migration: each of the multiple sources of administrative records that were used to estimate net migration include and exclude different groups. For details about methodology, see https://dof.ca.gov/wp-content/uploads/sites/352/2023/07/Projections_Methodology.pdf. Where was the data collected?  Data is collected throughout California. This subset of data includes Napa County. When was the data collected? This subset of Napa County data is from Report P-3: Population Projections, California, 2010-2060 (Baseline 2019 Population Projections; Vintage 2020 Release). Sacramento: California. July 2021. These 2019 baseline projections incorporate the latest historical population, birth, death, and migration data available as of July 1, 2020. Historical trends from 1990 through 2020 for births, deaths, and migration are examined. County populations by age, sex, and race/ethnicity are projected to 2060. Why was the data collected?  The population projections were prepared under the mandate of the California Government Code (Cal. Gov't Code § 13073, 13073.5). Where can I learn more about this data? https://dof.ca.gov/Forecasting/Demographics/Projections/ https://dof.ca.gov/wp-content/uploads/sites/352/Forecasting/Demographics/Documents/P3_Dictionary.txt https://dof.ca.gov/wp-content/uploads/sites/352/2023/07/Proj

  • API

    Vital Signs: Jobs – by county

    data.bayareametro.gov | Last Updated 2020-04-13T23:20:49.000Z

    VITAL SIGNS INDICATOR Jobs (LU2) FULL MEASURE NAME Employment estimates by place of work LAST UPDATED October 2019 DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees. DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/ U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/ U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/ Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/ METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed. For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017. The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma

  • API

    Vital Signs: Jobs – Bay Area

    data.bayareametro.gov | Last Updated 2020-04-13T23:21:14.000Z

    VITAL SIGNS INDICATOR Jobs (LU2) FULL MEASURE NAME Employment estimates by place of work LAST UPDATED October 2019 DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees. DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/ U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/ U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/ Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/ METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed. For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017. The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma

  • API

    Chicago COVID-19 Community Vulnerability Index (CCVI)

    data.cityofchicago.org | Last Updated 2022-02-03T23:22:50.000Z

    The Chicago CCVI identifies communities that have been disproportionately affected by COVID-19 and are vulnerable to barriers to COVID-19 vaccine uptake​. Vulnerability is defined as a combination of sociodemographic factors, epidemiological factors​, occupational factors​, and cumulative COVID-19 burden. The 10 components of the index include COVID-19 specific risk factors and outcomes and social factors known to be associated with social vulnerability in the context of emergency preparedness. The CCVI is derived from ranking values of the components by Chicago Community Area, then synthesizing them into a single composite weighted score. The higher the score, the more vulnerable the geographic area. ZIP Code CCVI is included to enable comparison with other COVID-19 data available on the Chicago Data Portal. Some elements of the CCVI are not available by ZIP Code. To create ZIP Code CCVI, the proportion of the ZIP Code population contributed by each Community Areas was determined. The apportioned populations were then weighted by the Community Area CCVI score and averaged to determine a ZIP Code CCVI score. The COVID-19 Community Vulnerability Index (CCVI) is adapted and modified from a Surgo Ventures collaboration (https://precisionforcovid.org/ccvi) and the CDC Social Vulnerability Index​. ZIP Codes are based on ZIP Code Tabulation Areas (ZCTAs) developed by the U.S. Census Bureau. For full documentation see: https://www.chicago.gov/content/dam/city/sites/covid/reports/012521/Community_Vulnerability_Index_012521.pdf