The population count of San Jose, CA was 1,026,658 in 2018.

Population

Population Change

Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Demographics and Population Datasets Involving San Jose, CA

  • API

    San Mateo County And California Crime Rates 2000-2014

    performance.smcgov.org | Last Updated 2016-08-31T20:40:07.000Z

    Violent and property crime rates per 100,000 population for San Mateo County and the State of California. The total crimes used to calculate the rates for San Mateo County include data from: Sheriff's Department Unincorporated, Atherton, Belmont, Brisbane, Broadmoor, Burlingame, Colma, Daly City, East Palo Alto, Foster City, Half Moon Bay, Hillsborough, Menlo Park, Millbrae, Pacifica, Redwood City, San Bruno, San Carlos, San Mateo, South San Francisco, Bay Area DPR, BART, Union Pacific Railroad, and CA Highway Patrol.

  • API

    COVID-19 Vaccine Doses Given to San Franciscans by Demographics Over Time

    data.sfgov.org | Last Updated 2022-08-08T15:19:46.000Z

    <strong>A. SUMMARY</strong> This dataset represents doses of COVID-19 vaccine administered in California to San Francisco residents over time. All vaccines given to people who live in San Francisco are included, no matter where the vaccination took place (the vaccine may have been administered in San Francisco or outside of San Francisco). The data are broken down by multiple demographic stratifications. <strong>B. HOW THE DATASET IS CREATED</strong> Information on doses administered to those who live in San Francisco is from the <a href="https://cairweb.org/about-cair/">California Immunization Registry (CAIR)</a>, run by the California Department of Public Health (CDPH). The information on individuals’ city of residence, age, race, and ethnicity are also recorded in CAIR and are self-reported at the time of vaccine administration. In order to estimate the percent of San Franciscans vaccinated, we provide <a href="https://data.census.gov/cedsci/table?q=popualtion%20age&g=0500000US06075&tid=ACSST5Y2019.S0101&hidePreview=false">the same 2019 five-year American Community Survey population estimates</a> that are used in <a href="https://data.sfgov.org/stories/s/COVID-19-Vaccinations-Progress/7mye-zncy/">our public dashboards</a>. <strong>C. UPDATE PROCESS</strong> Updated daily via automated process <strong>D. HOW TO USE THIS DATASET</strong> Before analysis, you must filter the dataset to the desired stratification of data using the OVERALL_SEGMENT column. For example, filtering OVERALL_SEGMENT to "Ages 5+ by Age Bracket, Administered by All Providers" will filter the data to residents 5 and over whose vaccinations were administered by any provider. You can then further segment the data and calculate percentages by Age Brackets. If you filter OVERALL_SEGMENT to "Ages 65+ by Race/Ethnicity, Administered by DPH Only", you will see the race/ethnicity breakdown for residents aged 65+ who received vaccinations from San Francisco’s Department of Public Health (DPH).

  • API

    COVID-19 Vaccine Doses Given to San Franciscans by Demographics

    data.sfgov.org | Last Updated 2022-08-08T15:18:36.000Z

    <strong>A. SUMMARY</strong> This dataset represents doses of COVID-19 vaccine administered in California to residents of San Francisco. All vaccines given to people who live in San Francisco are included, no matter where the vaccination took place (the vaccine may have been administered in San Francisco or outside of San Francisco). The data are broken down by multiple demographic stratifications. <strong>B. HOW THE DATASET IS CREATED</strong> Information on doses administered to those who live in San Francisco is from the <a href="https://cairweb.org/about-cair/">California Immunization Registry (CAIR)</a>, run by the California Department of Public Health (CDPH). The information on individuals’ city of residence, age, race, and ethnicity are also recorded in CAIR and are self-reported at the time of vaccine administration. In order to estimate the percent of San Franciscans vaccinated, we provide <a href="https://data.census.gov/cedsci/table?q=popualtion%20age&g=0500000US06075&tid=ACSST5Y2019.S0101&hidePreview=false">the same 2019 five-year American Community Survey population estimates</a> that are used in <a href="https://data.sfgov.org/stories/s/COVID-19-Vaccinations-Progress/7mye-zncy/">our public dashboards</a>. <strong>C. UPDATE PROCESS</strong> Updated daily via automated process <strong>D. HOW TO USE THIS DATASET</strong> Before analysis, you must filter the dataset to the desired stratification of data using the OVERALL_SEGMENT column. For example, filtering OVERALL_SEGMENT to "Ages 5+ by Age Bracket, Administered by All Providers" will filter the data to residents 5 and over whose vaccinations were administered by any provider. You can then further segment the data and calculate percentages by Age Brackets. If you filter OVERALL_SEGMENT to "Ages 65+ by Race/Ethnicity, Administered by DPH Only", you will see the race/ethnicity breakdown for residents aged 65+ who received vaccinations from San Francisco’s Department of Public Health (DPH).

  • API

    CHSA - ECON -- Food Insecurity --- 2-Year Dissected

    healthstat.dph.sbcounty.gov | Last Updated 2019-03-13T19:07:43.000Z

    Percent of People who Cannot Afford to Feed Themselves Sufficiently. U.S. Census Bureau, Current Population Survey, December Supplement (AKA USDA Food Security Supplement). Dissected by Year, Geographic Area, Age Category, and Race/Ethnicity.

  • API

    COVID-19 Cases by Population Characteristics Over Time

    data.sfgov.org | Last Updated 2022-08-08T14:03:19.000Z

    Note: On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Some fluctuation in historic data may result when this change is implemented on July 15, 2022. Note: As of March 2022, the race/ethnicity label changed from Native American to American Indian or Alaska Native to align with the Census. Note: On January 22, 2022, system updates to improve the timeliness and accuracy of San Francisco COVID-19 cases and deaths data were implemented. You might see some fluctuations in historic data as a result of this change. Due to the changes, starting on January 22, 2022, the number of new cases reported daily will be higher than under the old system as cases that would have taken longer to process will be reported earlier. <strong>A. SUMMARY</strong> This dataset shows San Francisco COVID-19 cases by population characteristics and by specimen collection date. Cases are included on the date the positive test was collected. Population characteristics are subgroups, or demographic cross-sections, like age, race, or gender. The City tracks how cases have been distributed among different subgroups. This information can reveal trends and disparities among groups. Data is lagged by five days, meaning the most recent specimen collection date included is 5 days prior to today. Tests take time to process and report, so more recent data is less reliable. <strong>B. HOW THE DATASET IS CREATED</strong> Data on the population characteristics of COVID-19 cases and deaths are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes. This data may not be immediately available for recently reported cases because of the time needed to process tests and validate cases. Daily case totals on previous days may increase or decrease. <u><a href="https://data.sfgov.org/s/nudz-9tg2/">Learn more</a></u>. Data are continually updated to maximize completeness of information and reporting on San Francisco residents with COVID-19. Data notes on each population characteristic type is listed below. <u> Race/ethnicity</u> * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups. <u> Sexual orientation</u> * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old.<u><a href="https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf"> Learn more about our data collection guidelines pertaining to sexual orientation</a></u>. <u> Gender</u> * The City collects information on gender identity using <a href="https://www.sfdph.org/dph/files/PoliciesProcedures/COM5_SexGenderGuidelines.pdf">these guidelines</a>. <u> Comorbidities</u> * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death. <u> Transmission type</u> * Information on transmission of COVID-19 is based on ca

  • API

    COVID Vaccinations Given to SF Residents Over Time

    data.sfgov.org | Last Updated 2022-08-08T15:17:48.000Z

    <strong>A. SUMMARY</strong> This dataset represents the COVID-19 vaccinations given to San Franciscans over time. All vaccines given to people who live in San Francisco are included, no matter where the vaccination took place (the vaccine may have been administered in San Francisco or outside of San Francisco). <strong>B. HOW THE DATASET IS CREATED</strong> Information on doses administered to those who live in San Francisco is from the California Immunization Registry (CAIR), run by the California Department of Public Health (CDPH). <strong>C. UPDATE PROCESS</strong> Updated daily via automated process <strong>D. HOW TO USE THIS DATASET</strong> Different vaccines have different dosage requirements. For example, the Moderna and the Pfizer vaccines require two doses in order for a resident to complete their primary vaccine series (as of December 21, 2021). Each dose is recorded separately in its respective dataset column. Other vaccines, such as Johnson & Johnson, would only require a single dose for a resident to complete their primary vaccine series (as of December 21, 2021). The Pfizer vaccine for children under 5 requires three separate doses. Single dose vaccines counts are recorded in a separate column. Summing the NEW_1ST_DOSES, NEW_2ND_DOSES, NEW_SINGLE_DOSES columns would give you the total count of primary vaccine series doses administered on a given day. To count the number of individuals who have completed their primary vaccine series on a given day, use the NEW_SERIES_COMPLETED column. To count the number of individuals vaccinated (with any primary series dose) for the first time on a given day, use the NEW_RECIPIENTS column. To count the number of individuals who got a vaccine booster on a given day, use the NEW_BOOSTER_RECIPIENTS column. To count the number of booster doses administered on a given day, use the NEW_BOOSTER_DOSES column. To count the total number of individuals who have received a booster over time, use the CUMULATIVE_BOOSTER_RECIPIENTS column. To count the total number of booster doses that have been administered over time, use the CUMULATIVE_BOOSTER_DOSES column. In <a href="https://data.sfgov.org/stories/s/COVID-19-Vaccinations-Progress/7mye-zncy/">our public dashboards</a> we combine this dataset with <a href="https://data.census.gov/cedsci/table?q=popualtion%20age&g=0500000US06075&tid=ACSST5Y2019.S0101&hidePreview=false">the US Census's 2019 five-year American Community Survey population estimates</a> to estimate the percent of San Franciscans vaccinated.

  • API

    Demographics For Unincorporated Areas In San Mateo County

    datahub.smcgov.org | Last Updated 2018-10-25T21:45:46.000Z

    Demographics, including median income, total population, race, ethnicity, and age for unincorporated areas in San Mateo County. This data comes from the 2012 American Community Survey 5 year estimates DP03 and DP05 files. They Sky Londa area is located within two Census Tracts. The data for Sky Londa is the sum of both of those Census Tracts. Users of this data should take this into account when using data for Sky Londa.

  • API

    Vital Signs: Jobs – by county

    data.bayareametro.gov | Last Updated 2020-04-13T23:20:49.000Z

    VITAL SIGNS INDICATOR Jobs (LU2) FULL MEASURE NAME Employment estimates by place of work LAST UPDATED October 2019 DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees. DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/ U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/ U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/ Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/ METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed. For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017. The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma

  • API

    Vital Signs: Jobs – by subcounty

    data.bayareametro.gov | Last Updated 2020-04-13T23:19:44.000Z

    VITAL SIGNS INDICATOR Jobs (LU2) FULL MEASURE NAME Employment estimates by place of work LAST UPDATED March 2020 DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees. DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/ U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/ U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/ Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/ METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed. For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017. The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma

  • API

    Vital Signs: Economic Output Per Capita – by Subregion

    data.bayareametro.gov | Last Updated 2019-10-25T20:14:25.000Z

    VITAL SIGNS INDICATOR Economic Output (EC14) FULL MEASURE NAME Per-capita gross regional product LAST UPDATED July 2019 DESCRIPTION Economic output is measured by the total and per-capita gross regional product and refers to the value of goods and services generated by workers and companies in a region. DATA SOURCE Bureau of Economic Analysis: Regional Economic Accounts 2001-2017 http://www.bea.gov/regional/ California Department of Finance: Population and Housing Estimates 2001-2009 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/ Note: Table E-8 California Department of Finance: Population and Housing Estimates 2010-2017 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/ Note: Table E-5 CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) As gross regional product data is only available on the MSA level, Bay Area data includes 10 counties (the nine core counties + San Benito County); this results in a slightly higher regional GRP as a result of additional population and business activity. Per-capita data reflects the additional population included as a result of San Benito County’s participation in the San Jose MSA. Data is inflation-adjusted by using both nominal and real data developed by BEA and appropriately escalating real GRP data in 2009 dollars to today’s dollars (2017). This inflation adjustment approach is specific to each MSA and is different from the CPI inflation approach used for other datasets on the Vital Signs website.