The population count of Santa Fe, NM was 83,847 in 2018.
Population
Population Change
Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API -
Demographics and Population Datasets Involving Santa Fe, NM
- API
Labor Force Demographic Characteristics by Commuting Mode Split: 2012 - 2016
data.cambridgema.gov | Last Updated 2022-07-05T15:32:18.000ZThis data set provides demographic and journey to work characteristics of the Cambridge Labor Force by primary mode of their journey to work. Attributes include age, presence of children, racial and ethnic minority status, vehicles available, time leaving home, time spent traveling, and annual household income. The data set originates from a special tabulation of the American Community Survey - the 2012 - 2016 version of the Census Transportation Planning Products (CTPP). The Cambridge Labor Force consist of all persons who live in Cambridge who work or are actively seeking employment. For more information on Journey to Work data in Cambridge, please see the report Moving Forward: 2020 - https://www.cambridgema.gov/-/media/Files/CDD/FactsandMaps/profiles/demo_moving_forward_2020.pdf
- API
Workforce Demographic Characteristics by Commuting Mode Split : 2012 - 2016
data.cambridgema.gov | Last Updated 2022-02-01T14:15:35.000ZThis data set provides demographic and journey to work characteristics of the Cambridge Workforce by primary mode of their journey to work. Attributes include age, presence of children, racial and ethnic minority status, vehicles available, time arriving at work, time spent traveling, and annual household income. The data set originates from a special tabulation of the American Community Survey - the 2012 - 2016 version of the Census Transportation Planning Products (CTPP). The Cambridge Workforce consist of all persons who work in Cambridge, regardless of home location. For more information on Journey to Work data in Cambridge, please see the report Moving Forward: 2020 - https://www.cambridgema.gov/-/media/Files/CDD/FactsandMaps/profiles/demo_moving_forward_2020.pdf
- API
equity_priority_communities_2020_acs2018
data.bayareametro.gov | Last Updated 2023-03-19T07:18:29.000Zgis.plan.equity_priority_communities_2020_acs2018
- API
Point In Time Homeless Survey Data
data.sonomacounty.ca.gov | Last Updated 2019-07-12T18:26:35.000ZThe County of Sonoma conducts an annual homeless count for the entire county. The survey data is derived from a sample of about 600 homeless persons countywide per year. The resulting information is statistically reliable only for the county as a whole, not for individual locations. The exception is the City of Santa Rosa, where the sample taken within the city is large enough to be predictive of the overall homeless population in that city.
- API
City of Cincinnati, Ohio Resident Survey
data.cincinnati-oh.gov | Last Updated 2022-09-15T14:21:32.000ZThe Cincinnati Community Perceptions Survey was developed by the City's Office of Performance and Data Analytics and ETC Institute in the fall of 2021. This community engagement tool was designed to allow the City Administration to evaluate resident satisfaction with our services and measure that level of satisfaction against cities of similar size, location, and demographics. The survey design also allows the City to capture community priorities for investment in services over the next two years. The survey was administered during the winter of 2021 by mail to a random sample of households across the city, and was available to complete by mail or online. The goal of 1,200 completed surveys was exceeded, with a total of 1,408 residents completing the survey. The overall residents for the sample of 1,408 households have a precision of at least +/-2.6% at the 95% level of confidence, and are demographically representative of our city's population. This year's survey will set a baseline for Cincinnati to work from with the goal of better understanding where we are excelling in service delivery and where our local government could benefit from intentional improvement and resources. Find the link to the Survey landing page here: https://etcinstitute.com/directionfinder2-0/city-of-cincinnati-ohio/
- API
Travel Decision Survey 2019
data.sfgov.org | Last Updated 2020-01-31T22:45:39.000Z**Please refer to the downloadable XLSX attachment (http://bit.ly/SFMTATravelSurvey2019) for the complete dataset, metadata, and instructions for use.** This workbook provides data and data dictionaries for the SFMTA 2019 Travel Decision Survey. On behalf of San Francisco Municipal Transportation Agency (SFMTA), Corey, Canapary & Galanis (CC&G) undertook a Mode Share Survey within the City and County of San Francisco as well as the eight surrounding Bay Area counties of Alameda, Contra Costa, San Mateo, Marin, Santa Clara, Napa, Sonoma and Solano. The primary goals of this study were to: • Assess percent mode share for travel in San Francisco for evaluation of the SFMTA Strategic Objective 2.2: Mode Share target of 80% sustainable travel by 2030. • Evaluate the above statement based on the following parameters: number of trips to, from, and within San Francisco by Bay Area residents. Trips by visitors to the Bay Area and for commercial purposes are not included. • Provide additional trip details, including trip purpose for each trip in the mode share question series. • Collect demographic data on the population of Bay Area residents who travel to, from, and within San Francisco. • Collect data on travel behavior and opinions that support other SFMTA strategy and project evaluation needs. The survey was conducted as a telephone study among 801 Bay Area residents aged 18 and older. Interviewing was conducted in English, Spanish, Mandarin, Cantonese, and Tagalog. Surveying was conducted via random digit dial (RDD) and cell phone sample. All survey datasets incorporate respondent weighting based on age and home location; utilize the “weight” field when appropriate in your analysis. The survey period for this survey is as follows: 2019: May - August 2019 The margin of error is related to sample size (n). For the total sample, the margin of error is 3.3% for a confidence level of 95%. When looking at subsets of the data, such as just the SF population, just the female population, or just the population of people who bicycle, the sample size decreases and the margin of error increases. Below is a guide of the margin of error for different samples sizes. Be cautious in making conclusions based off of small sample sizes. At the 95% confidence level is: • n = 801(Total Sample). Margin of error = +/- 3.3% • n = 400. Margin of error = +/- 4.85% • n = 100. Margin of error = +/- 9.80%