- Population
The population count of Lower Allen, PA was 6,937 in 2018.
Population
Population Change
Above charts are based on data from the U.S. Census American Community Survey | ODN Dataset | API -
Demographics and Population Datasets Involving Lower Allen, PA
- API
Bronx Zip Population and Density
bronx.lehman.cuny.edu | Last Updated 2012-10-21T14:06:17.000Z2010 Census Data on population, pop density, age and ethnicity per zip code
- API
Counts and Rates of New HIV Diagnoses Among Individuals Using Injection Drugs January 2016 - Current Monthly County & Statewide Health
data.pa.gov | Last Updated 2023-09-19T14:46:53.000ZThis indicator includes the count and rate of new HIV diagnoses among individuals using injection drugs per 100,000 individuals estimated to have Drug Use Disorder.
- API
Rate of Hospitalizations for Opioid Overdose per 100,000 Residents by Demographics CY 2016- 2017 Statewide Health Care Cost Containment Council (PHC4)
data.pa.gov | Last Updated 2022-10-17T20:22:39.000ZRate of hospitalization for opioid overdose per 100,000 PA Residents categorized by principal diagnosis of heroin or opioid pain medication overdose by year and demographic. This analysis is restricted to Pennsylvania residents age 15 and older who were hospitalized in Pennsylvania general acute care hospitals. Disclaimer: PHC4’s database contains statewide hospital discharge data submitted to PHC4 by Pennsylvania hospitals. Every reasonable effort has been made to ensure the accuracy of the information obtained from the Uniform Claims and Billing Form (UB-82/92/04) data elements. Computer collection edits and validation edits provide opportunity to correct specific errors that may have occurred prior to, during or after submission of data. The ultimate responsibility for data accuracy lies with individual providers. PHC4 agents and staff make no representation, guarantee, or warranty, expressed or implied that the data received from the hospitals are error-free, or that the use of this data will prevent differences of opinion or disputes with those who use published reports or purchased data. PHC4 will bear no responsibility or liability for the results or consequences of its use.
- API
Social Vulnerability Index for Virginia by Census Tract, 2018
data.virginia.gov | Last Updated 2023-05-22T14:49:26.000Z"ATSDR’s Geospatial Research, Analysis & Services Program (GRASP) created Centers for Disease Control and Prevention Social Vulnerability Index (CDC SVI or simply SVI, hereafter) to help public health officials and emergency response planners identify and map the communities that will most likely need support before, during, and after a hazardous event. SVI indicates the relative vulnerability of every U.S. Census tract. Census tracts are subdivisions of counties for which the Census collects statistical data. SVI ranks the tracts on 15 social factors, including unemployment, minority status, and disability, and further groups them into four related themes. Thus, each tract receives a ranking for each Census variable and for each of the four themes, as well as an overall ranking." For more see https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/SVI_documentation_2018.html
- API
Rate of Dependent Children Removed from their Home Where Parental Drug Use was Factor FFY 2017 - Current Human Services
data.pa.gov | Last Updated 2022-02-21T17:56:36.000ZThis dataset summarizes the number of dependent children (less than 18 years old) removed from households due to parental drug abuse. The data indicates if the dependent children were placed in kinship care or not. The total number of children in this data set are provided by the U.S. Census Bureau’s American Community Survey (ACS), which publishes 5 year estimates of the population. The most recent year of entries in this data set may be available before the corresponding ACS population estimates for that year are published. In that case, the data set uses values from the most recently published ACS estimates and notes the year from which those estimates are pulled. These values are updated once the Census Bureau releases the most recent estimates.” *Kinship care refers to the care of children by relatives or, in some jurisdictions, close family friends (often referred to as fictive kin). Relatives are the preferred resource for children who must be removed from their birth parents because it maintains the children's connections with their families. *The Adoption and Foster Care Analysis and Reporting System (AFCARS) definition of parental drug abuse is “Principal caretaker’s compulsive use of drugs that is not of a temporary nature.”
- API
Uninsured Population Census Data 5-year estimates for release years 2017-Current County Human Services and Insurance
data.pa.gov | Last Updated 2022-02-21T19:25:39.000ZThe American Community Survey (ACS) helps local officials, community leaders, and businesses understand the changes taking place in their communities. It is the premier source for detailed population and housing information about our nation. This dataset provides estimates by county for Health Insurance Coverage and is summarized from summary table S2701: SELECTED CHARACTERISTICS OF HEALTH INSURANCE COVERAGE IN THE UNITED STATES. The 5-year estimates are used to provide detail on every county in Pennsylvania and includes breakouts by Age, Gender, Race, Ethnicity, Household Income, and the Ratio of Income to Poverty. An blank cell within the dataset indicates that either no sample observations or too few sample observations were available to compute the statistic for that area. Margin of error (MOE). Some ACS products provide an MOE instead of confidence intervals. An MOE is the difference between an estimate and its upper or lower confidence bounds. Confidence bounds can be created by adding the margin of error to the estimate (for the upper bound) and subtracting the margin of error from the estimate (for the lower bound). All published ACS margins of error are based on a 90-percent confidence level. While an ACS 1-year estimate includes information collected over a 12-month period, an ACS 5-year estimate includes data collected over a 60-month period. In the case of ACS 1-year estimates, the period is the calendar year (e.g., the 2015 ACS covers the period from January 2015 through December 2015). In the case of ACS multiyear estimates, the period is 5 calendar years (e.g., the 2011–2015 ACS estimates cover the period from January 2011 through December 2015). Therefore, ACS estimates based on data collected from 2011–2015 should not be labeled “2013,” even though that is the midpoint of the 5-year period. Multiyear estimates should be labeled to indicate clearly the full period of time (e.g., “The child poverty rate in 2011–2015 was X percent.”). They do not describe any specific day, month, or year within that time period.
- API
Workforce Demographic Characteristics by Commuting Mode Split : 2012 - 2016
data.cambridgema.gov | Last Updated 2023-08-01T12:47:27.000ZThis data set provides demographic and journey to work characteristics of the Cambridge Workforce by primary mode of their journey to work. Attributes include age, presence of children, racial and ethnic minority status, vehicles available, time arriving at work, time spent traveling, and annual household income. The data set originates from a special tabulation of the American Community Survey - the 2012 - 2016 version of the Census Transportation Planning Products (CTPP). The Cambridge Workforce consist of all persons who work in Cambridge, regardless of home location. For more information on Journey to Work data in Cambridge, please see the report Moving Forward: 2020 - https://www.cambridgema.gov/-/media/Files/CDD/FactsandMaps/profiles/demo_moving_forward_2020.pdf
- API
Labor Force Demographic Characteristics by Commuting Mode Split: 2012 - 2016
data.cambridgema.gov | Last Updated 2023-08-01T12:47:57.000ZThis data set provides demographic and journey to work characteristics of the Cambridge Labor Force by primary mode of their journey to work. Attributes include age, presence of children, racial and ethnic minority status, vehicles available, time leaving home, time spent traveling, and annual household income. The data set originates from a special tabulation of the American Community Survey - the 2012 - 2016 version of the Census Transportation Planning Products (CTPP). The Cambridge Labor Force consist of all persons who live in Cambridge who work or are actively seeking employment. For more information on Journey to Work data in Cambridge, please see the report Moving Forward: 2020 - https://www.cambridgema.gov/-/media/Files/CDD/FactsandMaps/profiles/demo_moving_forward_2020.pdf
- API
Vital Signs: Displacement Risk - Bay Area
data.bayareametro.gov | Last Updated 2019-08-13T16:06:00.000ZVITAL SIGNS INDICATOR Displacement Risk (EQ3) FULL MEASURE NAME Share of lower-income households living in tracts at risk of displacement LAST UPDATED December 2018 DESCRIPTION Displacement risk refers to the share of lower-income households living in neighborhoods that have been losing lower-income residents over time, thus earning the designation “at risk”. While “at risk” households may not necessarily be displaced in the short-term or long-term, neighborhoods identified as being “at risk” signify pressure as reflected by the decline in lower-income households (who are presumed to relocate to other more affordable communities). The dataset includes metropolitan area, regional, county and census tract tables. DATA SOURCE U.S. Census Bureau: Decennial Census 1980-1990 Form STF3 https://nhgis.org U.S. Census Bureau: Decennial Census 2000 Form SF3a https://nhgis.org U.S. Census Bureau: Decennial Census 1980-2010 Longitudinal Tract Database http://www.s4.brown.edu/us2010/index.htm U.S. Census Bureau: American Community Survey 2010-2015 Form S1901 5-year rolling average http://factfinder2.census.gov U.S. Census Bureau: American Community Survey 2010-2017 Form B19013 5-year rolling average http://factfinder2.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Aligning with the approach used for Plan Bay Area 2040, displacement risk is calculated by comparing the analysis year with the most recent year prior to identify census tracts that are losing lower-income households. Historical data is pulled from U.S. Census datasets and aligned with today’s census tract boundaries using crosswalk tables provided by LTDB. Tract data, as well as regional income data, are calculated using 5-year rolling averages for consistency – given that tract data is only available on a 5-year basis. Using household tables by income level, the number of households in each tract falling below the median are summed, which involves summing all brackets below the regional median and then summing a fractional share of the bracket that includes the regional median (assuming a simple linear distribution within that bracket). Once all tracts in a given county or metro area are synced to today’s boundaries, the analysis identifies census tracts of greater than 500 lower-income people (in the prior year) to filter out low-population areas. For those tracts, any net loss between the prior year and the analysis year results in that tract being flagged as being at risk of displacement, and all lower-income households in that tract are flagged. To calculate the share of households at risk, the number of lower-income households living in flagged tracts are summed and divided by the total number of lower-income households living in the larger geography (county or metro). Minor deviations on a year-to-year basis should be taken in context, given that data on the tract level often fluctuates and has a significant margin of error; changes on the county and regional level are more appropriate to consider on an annual basis instead.
- API
Vital Signs: Displacement Risk - by county
data.bayareametro.gov | Last Updated 2019-08-13T16:05:27.000ZVITAL SIGNS INDICATOR Displacement Risk (EQ3) FULL MEASURE NAME Share of lower-income households living in tracts at risk of displacement LAST UPDATED December 2018 DESCRIPTION Displacement risk refers to the share of lower-income households living in neighborhoods that have been losing lower-income residents over time, thus earning the designation “at risk”. While “at risk” households may not necessarily be displaced in the short-term or long-term, neighborhoods identified as being “at risk” signify pressure as reflected by the decline in lower-income households (who are presumed to relocate to other more affordable communities). The dataset includes metropolitan area, regional, county and census tract tables. DATA SOURCE U.S. Census Bureau: Decennial Census 1980-1990 Form STF3 https://nhgis.org U.S. Census Bureau: Decennial Census 2000 Form SF3a https://nhgis.org U.S. Census Bureau: Decennial Census 1980-2010 Longitudinal Tract Database http://www.s4.brown.edu/us2010/index.htm U.S. Census Bureau: American Community Survey 2010-2015 Form S1901 5-year rolling average http://factfinder2.census.gov U.S. Census Bureau: American Community Survey 2010-2017 Form B19013 5-year rolling average http://factfinder2.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Aligning with the approach used for Plan Bay Area 2040, displacement risk is calculated by comparing the analysis year with the most recent year prior to identify census tracts that are losing lower-income households. Historical data is pulled from U.S. Census datasets and aligned with today’s census tract boundaries using crosswalk tables provided by LTDB. Tract data, as well as regional income data, are calculated using 5-year rolling averages for consistency – given that tract data is only available on a 5-year basis. Using household tables by income level, the number of households in each tract falling below the median are summed, which involves summing all brackets below the regional median and then summing a fractional share of the bracket that includes the regional median (assuming a simple linear distribution within that bracket). Once all tracts in a given county or metro area are synced to today’s boundaries, the analysis identifies census tracts of greater than 500 lower-income people (in the prior year) to filter out low-population areas. For those tracts, any net loss between the prior year and the analysis year results in that tract being flagged as being at risk of displacement, and all lower-income households in that tract are flagged. To calculate the share of households at risk, the number of lower-income households living in flagged tracts are summed and divided by the total number of lower-income households living in the larger geography (county or metro). Minor deviations on a year-to-year basis should be taken in context, given that data on the tract level often fluctuates and has a significant margin of error; changes on the county and regional level are more appropriate to consider on an annual basis instead.