The annual personal income of Grand Rapids Metro Area (MI) was $42,352 in 2014. The annual personal income of Greenville Metro Area (SC) was $38,069 in 2014.

Annual Personal Income in US$

Per capita personal income was computed using Census Bureau midyear population estimates. Estimates for 2010-2014 reflect county population estimates available as of March 2015. All dollar estimates are in current dollars (not adjusted for inflation).

Above charts are based on data from the U.S. Bureau of Economic Analysis | Data Source | ODN Dataset | API - Notes:

1. ODN datasets and APIs are subject to change and may differ in format from the original source data in order to provide a user-friendly experience on this site.

2. To build your own apps using this data, see the ODN Dataset and API links.

3. If you use this derived data in an app, we ask that you provide a link somewhere in your applications to the Open Data Network with a citation that states: "Data for this application was provided by the Open Data Network" where "Open Data Network" links to http://opendatanetwork.com. Where an application has a region specific module, we ask that you add an additional line that states: "Data about REGIONX was provided by the Open Data Network." where REGIONX is an HREF with a name for a geographical region like "Seattle, WA" and the link points to this page URL, e.g. http://opendatanetwork.com/region/1600000US5363000/Seattle_WA

Economy and Personal Income Datasets Involving Greenville Metro Area (SC) or Grand Rapids Metro Area (MI)

  • API

    Annual Personal Income for State of Iowa

    mydata.iowa.gov | Last Updated 2024-04-08T22:44:11.000Z

    This dataset provides annual personal income estimates for State of Iowa produced by the U.S. Bureau of Economic Analysis beginning in 1997. Data includes the following estimates: personal income, per capita personal income, wages and salaries, supplements to wages and salaries, private nonfarm earnings, compensation of employees, average compensation per job, and private nonfarm compensation. Personal income is defined as the sum of wages and salaries, supplements to wages and salaries, proprietors’ income, dividends, interest, and rent, and personal current transfer receipts, less contributions for government social insurance. Personal income for Iowa is the income received by, or on behalf of all persons residing in Iowa, regardless of the duration of residence, except for foreign nationals employed by their home governments in Iowa. Per capita personal income is personal income divided by the Census Bureau’s annual midyear (July 1) population estimates. Wages and salaries is defined as the remuneration receivable by employees (including corporate officers) from employers for the provision of labor services. It includes commissions, tips, and bonuses; employee gains from exercising stock options; and pay-in-kind. Judicial fees paid to jurors and witnesses are classified as wages and salaries. Wages and salaries are measured before deductions, such as social security contributions, union dues, and voluntary employee contributions to defined contribution pension plans. Supplements to wages and salaries consists of employer contributions for government social insurance and employer contributions for employee pension and insurance funds. Private nonfarm earnings is the sum of wages and salaries, supplements to wages and salaries, and nonfarm proprietors' income, excluding farm and government. Compensation to employees is the total remuneration, both monetary and in kind, payable by employers to employees in return for their work during the period. It consists of wages and salaries and of supplements to wages and salaries. Compensation is presented on an accrual basis - that is, it reflects compensation liabilities incurred by the employer in a given period regardless of when the compensation is actually received by the employee. Average compensation per job is compensation of employees divided by total full-time and part-time wage and salary employment. Private nonfarm compensation is the sum of wages and salaries and supplements to wages and salaries, excluding farm and government. More terms and definitions are available on https://apps.bea.gov/regional/definitions/.

  • API

    Public Libraries

    data.ct.gov | Last Updated 2024-06-05T13:27:54.000Z

    The Public Libraries data set aggregates individual library services and finance data to the town level. Public libraries provide free borrowing privileges and services to their patrons and receive financial support from local tax funds. Public libraries may be municipal, which are established by and administrative units of local government, or association, which are not units of town government but receive some public funding. Some towns are served by more than one public library. Library visits include all persons entering a library for any purpose, including persons attending meetings or activities and persons requiring no staff assistance. Circulation counts all library materials of all formats lent out for use outside the library, including renewals. Registered borrowers are all town residents to whom a library has issued membership. Reference questions counts all interactions in which library staff provide information, knowledge, or recommendations to patrons. Town tax appropriation indicates the funds allotted to the library's operation budget from the town. The Adjusted Equalized Net Grand List per Capita (AENGLC) measures town wealth based on property tax and income per capita.

  • API

    Vital Signs: Jobs by Wage Level - Metro

    data.bayareametro.gov | Last Updated 2019-10-25T20:41:01.000Z

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1) FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations LAST UPDATED January 2019 DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage. DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html American Community Survey (2001-2017) http://api.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour. Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average. Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017. Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases. In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling c

  • API

    Vital Signs: Jobs by Wage Level - Region

    data.bayareametro.gov | Last Updated 2019-10-25T20:41:27.000Z

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1) FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations LAST UPDATED January 2019 DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage. DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html American Community Survey (2001-2017) http://api.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour. Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average. Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017. Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases. In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling c

  • API

    Vital Signs: Jobs by Wage Level - Subregion

    data.bayareametro.gov | Last Updated 2019-10-25T20:41:25.000Z

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1) FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations LAST UPDATED January 2019 DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage. DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html American Community Survey (2001-2017) http://api.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour. Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average. Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017. Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases. In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling c

  • API

    1980 Census Detailed Census Tract Data

    data.kcmo.org | Last Updated 2021-11-12T15:18:16.000Z

    detailed 1980 characteristics of people and housing for individual 2010 census tract portions inside or outside KCMO

  • API

    2013-2017 American Community Survey Detailed Census Tract Data

    data.kcmo.org | Last Updated 2023-03-24T19:40:40.000Z

    DETAILED CHARACTERISTICS OF PEOPLE AND HOUSING FOR INDIVIDUAL 2010 CENSUS TRACT PORTIONS INSIDE OR OUTSIDE KCMO - Some demographic data are from the 2010 Census while other data are from the 2013-2017 American Community Survey (ACS). The ACS replaces what until 2000 was the Long Form of the census; both have been based on surveys of a partial sample of people. The ACS sample is so small that surveys from five years must be combined to be reliable. The 2013-2017 ACS is the most recent grouping of 5 years of data. ACS data have been proportioned to conform with 2010 Census total population and total households.

  • API

    2015-2019 American Community Survey Detailed Census Tract Data

    data.kcmo.org | Last Updated 2023-03-24T21:11:36.000Z

    DETAILED CHARACTERISTICS OF PEOPLE AND HOUSING FOR INDIVIDUAL 2010 CENSUS TRACT PORTIONS INSIDE OR OUTSIDE KCMO - Some demographic data are from the 2010 Census while other data are from the 2015-2019 American Community Survey (ACS). The ACS replaces what until 2000 was the Long Form of the census; both have been based on surveys of a partial sample of people. The ACS sample is so small that surveys from five years must be combined to be reliable. The 2015-2019 ACS is the most recent grouping of 5 years of data. ACS data have been proportioned to conform with 2010 Census total population and total households.

  • API

    Historical personal income tax return statistics by county and tax year

    data.oregon.gov | Last Updated 2023-12-06T19:49:42.000Z

    A historical tabulation of selected tax return statistics by counties and other geographic areas reported every year by the Research Section at the Department of Revenue. Source data comes from Tables A through D in the "Returns by county, other states, and city" spreadsheet that accompanies every annual Personal Income Tax publication. Data are reported for all 36 Oregon counties as well as five areas outside Oregon, based on the mailing address on the return when it was filed. Clark County, Washington, is reported separately from the remainder of Washington because so many Clark County residents work in Portland. Idaho and California also have individual tables. Returns from all other states (and outside of the US) are grouped together as "Other". For full-year resident returns, Oregon AGI is the same as federal AGI. For part-year resident and nonresident returns, Oregon AGI is determined from Oregon sourced income and adjustments. Note that some rows have blank cells indicating that data has been omitted, often for disclosure reasons. See "data limitations" below.

  • API

    Feed the Future Malawi: Baseline Household Survey, Household Data Used for the Women's Empowerment in Agriculture Index

    datahub.usaid.gov | Last Updated 2024-06-07T22:06:43.000Z

    This dataset describes data about the households that participated in this baseline survey collected for the express purpose of calculating the Women's Empowerment in Agriculture Index (WEAI). The spreadsheet has 233 columns and 4,880 rows. The Malawi Population-Based Survey (PBS) provides a comprehensive assessment of the current status of agriculture and food security in seven districts in the Central and Southern Regions: Mchinji, Lilongwe, Dedza, Ntcheu, Balaka, Machinga, and Mangochi. The PBS was conducted from November 14 to December 22, 2012. The overall objective of the survey is to provide baseline on data living standards, nutritional status, and women's empowerment in agriculture in the Zone Of Influence. A total of 3,397 households in the ZOI were interviewed for the PBS, and these households were spread across 126 rural standard enumeration areas (SEAs) in the seven districts.