The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X X 2 0 X X X 2 X X 2 2
0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 0 2X+2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X 2 2X+2 2X+2 2X+2 2 2X+2 2X+2 2 0 2X+2 2X 0 0 0 2X 0
0 0 2X 0 0 0 2X 0 0 2X 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 0 2X 0 2X 2X 0 0 0
0 0 0 2X 0 0 0 2X 2X 2X 2X 2X 2X 0 2X 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 0 2X 0 2X 2X 2X 0 0 0
0 0 0 0 2X 2X 2X 2X 2X 0 0 2X 0 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 0 0 0 2X 2X 2X 2X 0
generates a code of length 47 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 44.
Homogenous weight enumerator: w(x)=1x^0+80x^44+164x^46+214x^48+24x^50+24x^52+4x^54+1x^64
The gray image is a code over GF(2) with n=376, k=9 and d=176.
This code was found by Heurico 1.16 in 0.078 seconds.