- API
Vital Signs: Targets - Goals Details
data.bayareametro.gov | Last Updated 2018-07-06T18:04:02.000ZVITAL SIGNS This dataset is used for the Targets page on the Vital Signs website at www.vitalsigns.mtc.ca.gov/targets. CONTACT INFORMATION vitalsigns.info@bayareametro.gov
- API
Vital Signs: Income (Median by Workplace) – by county
data.bayareametro.gov | Last Updated 2019-08-13T16:17:18.000ZVITAL SIGNS INDICATOR Income (EC5) FULL MEASURE NAME Worker income by workplace (earnings) LAST UPDATED May 2019 DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis. DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org U.S. Census Bureau: American Community Survey Form B08521 (2006-2017; place of employment) http://api.census.gov Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov CONTACT INFORMATION Vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income. Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.
- API
Vital Signs: Vulnerability To Sea Level Rise - Inundation Areas Shapefile (lower resolution)
data.bayareametro.gov | Last Updated 2018-07-06T18:04:14.000ZVITAL SIGNS INDICATOR Vulnerability to Sea Level Rise (EN11) FULL MEASURE NAME Share of population living in zones at risk from various sea level rise forecast scenarios LAST UPDATED July 2017 DESCRIPTION Vulnerability to sea level rise refers to the share of the historical and current Bay Area population located in areas at risk from forecasted sea level rise over the coming decades. Given that there are varying forecasts for the heightened high tides (i.e., mean highest high water mark), projected sea level impacts are presented for six scenarios ranging from a one foot rise to six feet. A neighborhood is considered vulnerable to sea level rise when at least 10 percent of its land area is forecasted to be inundated by peak high tides in the coming years. The dataset includes at-risk population and population share data for the region, counties, and neighborhoods. DATA SOURCE San Francisco Bay Conservation and Development Commission/Metropolitan Transportation Commission ART (Adaption to Rising Tides) Bay Area Sea Level Rise Analysis and Mapping Project (2017) 2017 Sea Level Rise Maps http://www.adaptingtorisingtides.org/project/regional-sea-level-rise-mapping-and-shoreline-analysis/ CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Projected areas of inundation were developed by BCDC and NOAA at one-foot intervals ranging from one foot to four feet of sea level rise. Regional and local sea level rise analysis is based on data from BCDC’s ART (Adapting to Rising Tides) Bay Area Sea Level Rise and Mapping Project. This data reflects the most up-to-date and detailed sea level rise mapping for the Bay Area. Sea level rise analysis for metro areas is based on national sea level rise mapping from NOAA, which is best for metro-to-metro comparison. To determine the impacts on historical and current populations, inundation areas were overlaid on a U.S. Census shapefile of 2010 Census tracts using Census Bureau population data. Because census tracts can extend beyond the coastline, the baseline scenario of zero feet was used to determine existing sea level coverage of census tracts. Sea level rise refers to the change from this level. The area of the tract was determined by measuring the component of the tract area not currently under water. This area, rather than the total tract area, was used as the denominator to determine the percentage of the census tract that is inundated under future sea level rise projection scenarios. When at least 10 percent of tract land area is inundated with a given sea level, its residents are considered to be affected by sea level rise. For the purpose of this analysis, SLR scenarios were assumed not to reflect periodic inundation due to extreme weather events, which may lead to an even greater share of residents affected on a less frequent basis. Prior to the impacts from sea level rise, neighborhoods will experience temporary flooding from extreme weather events which can create significant damage to homes and neighborhoods. It should be noted that by directly reviewing maps and tools through the ART (Adapting to Rising Tides) program, regular inundation sea level rise and temporary flooding from extreme weather events are both available. More information on this approach is available here: http://www.adaptingtorisingtides.org/project/regional-sea-level-rise-mapping-and-shoreline-analysis/ Sea level rise analysis for metro areas reflects local, as opposed to global, sea level rise. Recent data has shown sea level is rising faster in the southeast region of the United States. Regional differences in the rate of sea level rise. More information and data related to the rate of sea level rise for different coastal regions is available here: https://oceanservice.noaa.gov/facts/sealevel-global-local.html
- API
Vital Signs: Time in Congestion - Corridor Shapefile (Updated October 2018)
data.bayareametro.gov | Last Updated 2018-10-24T00:30:32.000ZVITAL SIGNS INDICATOR Time Spent in Congestion (T7) FULL MEASURE NAME Time Spent in Congestion LAST UPDATED October 2018 DATA SOURCE MTC/Iteris Congestion Analysis No link available CA Department of Finance Forms E-8 and E-5 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-8/ http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-5/ CA Employment Division Department: Labor Market Information http://www.labormarketinfo.edd.ca.gov/ CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Time spent in congestion measures the hours drivers are in congestion on freeway facilities based on traffic data. In recent years, data for the Bay Area comes from INRIX, a company that collects real-time traffic information from a variety of sources including mobile phone data and other GPS locator devices. The data provides traffic speed on the region’s highways. Using historical INRIX data (and similar internal datasets for some of the earlier years), MTC calculates an annual time series for vehicle hours spent in congestion in the Bay Area. Time spent in congestion is defined as the average daily hours spent in congestion on Tuesdays, Wednesdays and Thursdays during peak traffic months on freeway facilities. This indicator focuses on weekdays given that traffic congestion is generally greater on these days; this indicator does not capture traffic congestion on local streets due to data unavailability. This congestion indicator emphasizes recurring delay (as opposed to also including non-recurring delay), capturing the extent of delay caused by routine traffic volumes (rather than congestion caused by unusual circumstances). Recurring delay is identified by setting a threshold of consistent delay greater than 15 minutes on a specific freeway segment from vehicle speeds less than 35 mph. This definition is consistent with longstanding practices by MTC, Caltrans and the U.S. Department of Transportation as speeds less than 35 mph result in significantly less efficient traffic operations. 35 mph is the threshold at which vehicle throughput is greatest; speeds that are either greater than or less than 35 mph result in reduced vehicle throughput. This methodology focuses on the extra travel time experienced based on a differential between the congested speed and 35 mph, rather than the posted speed limit. To provide a mathematical example of how the indicator is calculated on a segment basis, when it comes to time spent in congestion, 1,000 vehicles traveling on a congested segment for a 1/4 hour (15 minutes) each, [1,000 vehicles x ¼ hour congestion per vehicle= 250 hours congestion], is equivalent to 100 vehicles traveling on a congested segment for 2.5 hours each, [100 vehicles x 2.5 hour congestion per vehicle = 250 hours congestion]. In this way, the measure captures the impacts of both slow speeds and heavy traffic volumes. MTC calculates two measures of delay – congested delay, or delay that occurs when speeds are below 35 miles per hour, and total delay, or delay that occurs when speeds are below the posted speed limit. To illustrate, if 1,000 vehicles are traveling at 30 miles per hour on a one mile long segment, this would represent 4.76 vehicle hours of congested delay [(1,000 vehicles x 1 mile / 30 miles per hour) - (1,000 vehicles x 1 mile / 35 miles per hour) = 33.33 vehicle hours – 28.57 vehicle hours = 4.76 vehicle hours]. Considering that the posted speed limit on the segment is 60 miles per hour, total delay would be calculated as 16.67 vehicle hours [(1,000 vehicles x 1 mile / 30 miles per hour) - (1,000 vehicles x 1 mile / 60 miles per hour) = 33.33 vehicle hours – 16.67 vehicle hours = 16.67 vehicle hours]. Data sources listed above were used to calculate per-capita and per-worker statistics. Top congested corridors are ranked by total vehicle hours of delay, meaning that the highlighted corridors reflect a combination of slow speeds and heavy t
- API
Vital Signs: Commute Time (by Place of Employment) – by County (updated January 2018)
data.bayareametro.gov | Last Updated 2018-07-06T18:03:17.000ZVITAL SIGNS INDICATOR Commute Time (T4) FULL MEASURE NAME Commute time by employment location LAST UPDATED January 2018 DESCRIPTION Commute time refers to the average number of minutes a commuter spends traveling to work on a typical day. The dataset includes metropolitan area, county, city, and census tract tables by place of residence. DATA SOURCE U.S. Census Bureau: Decennial Census (1980-2000) - via MTC/ABAG Bay Area Census http://www.bayareacensus.ca.gov/transportation.htm U.S. Census Bureau: American Community Survey Table B08536 (2016only; by place of employment) Table B08601 (2016only; by place of employment) www.api.census.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) For the decennial Census datasets, breakdown of commute times was unavailable by mode; only overall data could be provided on a historical basis. For the American Community Survey datasets, 1-year rolling average data was used for all metros, region, and county geographic levels, while 5-year rolling average data was used for cities and tracts. This is due to the fact that more localized data is not included in the 1-year dataset across all Bay Area cities. Similarly, modal data is not available for every Bay Area city or census tract, even when the 5-year data is used for those localized geographies. Regional commute times were calculated by summing aggregate county travel times and dividing by the relevant population; similarly, modal commute time were calculated using aggregate times and dividing by the number of communities choosing that mode for the given geography. Census tract data is not available for tracts with insufficient numbers of residents. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area in addition to the primary MSAs for the nine other major metropolitan areas.
- API
Vital Signs: Change in Jobs by Industry – by county
data.bayareametro.gov | Last Updated 2019-08-13T16:20:02.000ZVITAL SIGNS INDICATOR Change in Jobs by Industry (EC2) FULL MEASURE NAME Employment by place of work by industry sector LAST UPDATED May 2019 DESCRIPTION Change in jobs by industry is the percent change and absolute difference in the number of people who have jobs within a certain industry type in a given geographical area DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2017 http://www.labormarketinfo.edd.ca.gov/ CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment by place of work and by industry. Industries are classified by their North American Industry Classification System (NAICS) code. Vital Signs aggregates employment into 11 industry sectors: Farm, Mining, Logging and Construction, Manufacturing, Trade, Transportation and Utilities, Information, Financial Activities, Professional and Business Services, Educational and Health Services, Leisure and Hospitality, Government, and Other. EDD counts all public-sector jobs under Government, including public transportation, public schools, and public hospitals. The Other category includes service jobs such as auto repair and hair salons and organizations such as churches and social advocacy groups. Employment in the technology sector are classified under three categories: Professional and Business Services, Information, and Manufacturing. The latter category includes electronic and computer manufacturing. For further details of typical firms found in each sector, refer to the 2012 NAICS Manual (http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2012). The Bureau of Labor Statistics (BLS) provides industry estimates for non-Bay Area metro areas. Their main industry employment estimates, the Current Employment Survey and Quarterly Census of Employment and Wages, do not provide annual estimates of farm employment. To be consistent, the metro comparison evaluates nonfarm employment for all metro areas, including the Bay Area. Industry shares are thus slightly different for the Bay Area between the historical trend and metro comparison sections. The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of the nation’s employment in that same sector. Because BLS does not provide national farm estimates, note that there is no LQ for regional farm employment. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.
- API
Vital Signs: Income (Median by Place of Residence) – by metro
data.bayareametro.gov | Last Updated 2019-08-13T16:18:34.000ZVITAL SIGNS INDICATOR Income (EC4) FULL MEASURE NAME Household income by place of residence LAST UPDATED May 2019 DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis. DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income. Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.
- API
Vital Signs: Jobs by Industry (Location Quotient) – Bay Area
data.bayareametro.gov | Last Updated 2019-08-13T16:20:18.000ZVITAL SIGNS INDICATOR Jobs by Industry (EC1) FULL MEASURE NAME Employment by place of work by industry sector LAST UPDATED July 2019 DESCRIPTION Jobs by industry refers to both the change in employment levels by industry and the proportional mix of jobs by economic sector. This measure reflects the changing industry trends that affect our region’s workers. DATA SOURCE Bureau of Labor Statistics: Current Employment Statistics 1990-2017 http://data.bls.gov CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment by place of work and by industry. Industries are classified by their North American Industry Classification System (NAICS) code. Vital Signs aggregates employment into 11 industry sectors: Farm, Mining, Logging and Construction, Manufacturing, Trade, Transportation and Utilities, Information, Financial Activities, Professional and Business Services, Educational and Health Services, Leisure and Hospitality, Government, and Other. EDD counts all public-sector jobs under Government, including public transportation, public schools, and public hospitals. The Other category includes service jobs such as auto repair and hair salons and organizations such as churches and social advocacy groups. Employment in the technology sector are classified under three categories: Professional and Business Services, Information, and Manufacturing. The latter category includes electronic and computer manufacturing. For further details of typical firms found in each sector, refer to the 2012 NAICS Manual (http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2012). The Bureau of Labor Statistics (BLS) provides industry estimates for non-Bay Area metro areas. Their main industry employment estimates, the Current Employment Survey and Quarterly Census of Employment and Wages, do not provide annual estimates of farm employment. To be consistent, the metro comparison evaluates nonfarm employment for all metro areas, including the Bay Area. Industry shares are thus slightly different for the Bay Area between the historical trend and metro comparison sections. The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of the nation’s employment in that same sector. Because BLS does not provide national farm estimates, note that there is no LQ for regional farm employment. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.
- API
Vital Signs: Change in Jobs by Industry – Bay Area
data.bayareametro.gov | Last Updated 2019-08-13T16:20:33.000ZVITAL SIGNS INDICATOR Change in Jobs by Industry (EC2) FULL MEASURE NAME Employment by place of work by industry sector LAST UPDATED May 2019 DESCRIPTION Change in jobs by industry is the percent change and absolute difference in the number of people who have jobs within a certain industry type in a given geographical area DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2017 http://www.labormarketinfo.edd.ca.gov/ CONTACT INFORMATION vitalsigns.info@bayareametro.gov METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment by place of work and by industry. Industries are classified by their North American Industry Classification System (NAICS) code. Vital Signs aggregates employment into 11 industry sectors: Farm, Mining, Logging and Construction, Manufacturing, Trade, Transportation and Utilities, Information, Financial Activities, Professional and Business Services, Educational and Health Services, Leisure and Hospitality, Government, and Other. EDD counts all public-sector jobs under Government, including public transportation, public schools, and public hospitals. The Other category includes service jobs such as auto repair and hair salons and organizations such as churches and social advocacy groups. Employment in the technology sector are classified under three categories: Professional and Business Services, Information, and Manufacturing. The latter category includes electronic and computer manufacturing. For further details of typical firms found in each sector, refer to the 2012 NAICS Manual (http://www.census.gov/cgi-bin/sssd/naics/naicsrch?chart=2012). The Bureau of Labor Statistics (BLS) provides industry estimates for non-Bay Area metro areas. Their main industry employment estimates, the Current Employment Survey and Quarterly Census of Employment and Wages, do not provide annual estimates of farm employment. To be consistent, the metro comparison evaluates nonfarm employment for all metro areas, including the Bay Area. Industry shares are thus slightly different for the Bay Area between the historical trend and metro comparison sections. The location quotient (LQ) is used to evaluate level of concentration or clustering of an industry within the Bay Area and within each county of the region. A location quotient greater than 1 means there is a strong concentration for of jobs in an industry sector. For the Bay Area, the LQ is calculated as the share of the region’s employment in a particular sector divided by the share of the nation’s employment in that same sector. Because BLS does not provide national farm estimates, note that there is no LQ for regional farm employment. For each county, the LQ is calculated as the share of the county’s employment in a particular sector divided by the share of the region’s employment in that same sector.
- API
Vital Signs Targets - Measure Performance (updated July 2019)
data.bayareametro.gov | Last Updated 2019-10-08T21:28:31.000ZThis dataset is used for the Targets page on the Vital Signs website at www.vitalsigns.mtc.ca.gov/targets. CONTACT INFORMATION vitalsigns.info@bayareametro.gov