- API
Modular, Fault-Tolerant Electronics Supporting Space Exploration Project
nasa-test-0.demo.socrata.com | Last Updated 2015-07-20T05:26:45.000ZModern electronic systems tolerate only as many point failures as there are redundant system copies, using mere macro-scale redundancy. Fault Tolerant Electronics Supporting Space Exploration (FTESSE) creates an electronic design paradigm using reprogrammable FPGAs to create swappable Circuit Object Blocks (COBs) ? analogous to software objects ? for the first time enabling redundancy on a micro-scale. The result is an increased tolerance of point failures by several orders of magnitude over traditional approaches. In the FTESSE approach, FPGAs are partitioned into COBs (groups of gates), each performing a specific function. Bad areas can be mapped like the bad sector data on a disk drive, enabling COBs to be placed in areas of working gates to recover system performance. Hardware tested during Phase I verified point failures could be introduced into an example circuit and corrected. As in the Phase I model, circuits to be monitored reside on a Slave FPGA, and a Master FPGA monitors outputs of all COBs, sensing faults and mapping non-working gates on the Slave FPGA. The Master is a rad-hard, triple mode redundancy (TMR) FPGA, but the Slaves need not be, opening the doors to higher performance applications while maintaining high levels of fault tolerance.
- API
Electronics Modeling and Design for Cryogenic and Radiation Hard Applications Project
nasa-test-0.demo.socrata.com | Last Updated 2015-07-20T05:16:28.000ZWe are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with a focus on very low temperature and radiation effects. These new tools will help enable NASA to design next generation electronics especially for planetary projects including the Europa Jupiter System Mission. The new models and tools will be directly incorporated into industry standard CAD products to ensure their usability and extend their applicability to extreme environments. Such capabilities will significantly improve reliability, performance and lifetime of electronics that are used for space missions. This will be achieved through the development of novel compact and distributed device modeling capabilities for radiation-hard and extreme temperature instrument design, as well as techniques for circuit design that help to predict the vulnerability of circuits to degradation and upset from radiation. Research and development is indicating that standard bulk silicon CMOS and SOI processes operate well under these extreme conditions so that there is little need for NASA to commit to large expenditures for exotic materials. Models and CAD tools are relatively inexpensive as compared to fabrication costs; thus the results of this project should provide a very large return on investment.
- API
OMI/Aura Level 1B VIS Zoom-in Geolocated Earthshine Radiances 1-orbit L2 Swath 13x12 km V003
nasa-test-0.demo.socrata.com | Last Updated 2015-07-20T04:54:21.000ZThe Level-1B (L1B) Radiance Product OML1BRVZ (Version-3) from the Aura-OMI is now available (http://disc.gsfc.nasa.gov/Aura/OMI/oml1brvz_v003.shtml) to public from the NASA GSFC Earth Sciences Data and Information Services Center (GES DISC). OMI calibrated and geolocated radiances for the channels in the UV1 (264-311 nm), UV2 (307-383 nm)and VIS(349-504) regions, spectral irradiances, calibration measurements, and all derived geophysical atmospheric products are archived at the NASA Goddard DAAC. (The shortname for this OMI Level-1B Product is OML1BRVZ) The lead algorithm scientist for this product is Dr. Marcel Dobber from the KNMI. The OMI Level 1B Visible Radiance Zoom-in Product OML1BRVZ contains geolocated Earth view spectral radiances from the VIS channel detectors in the wavelength range of 349 to 504 nm. The product contains the measurements that are taken once a month using the spatial zoom-in measurement modes (30 pixels covering 750 km swath width). In spatial zoom in mode the nadir ground pixel size is 13 x 12 km2 and measurements are available only for the wavelengths 306 to 432 nm. OML1BRVZ files are stored in EOS Hierarchical Data Format (HDF-EOS 2.4) which is based on HDF4. The radiance for the earth measurements (also referred as signal) and its precision are stored as a 16 bit mantissa and an 8-bit exponent. The signal can be computed using the equation: signal = signal_mantissa x 10 exponent . For the precision, the same exponent is used as for the signal. Each file contains data from the day lit portion of an orbit (~53 minutes) and is roughly 570 MB in size. There are approximately 14 orbits per day.
- API
Planning for Planetary Science Mission Including Resource Prospecting Project
nasa-test-0.demo.socrata.com | Last Updated 2015-07-20T05:33:43.000ZAdvances in computer-aided mission planning can enhance mission operations and science return for surface missions to Mars, the Moon, and beyond. While the innovations envisioned by this program are broadly applicable, they serve an immediate and urgent need for missions to prospect for volatiles at the lunar poles (i.e., the NASA Lunar Resource Prospector Mission, currently in Phase A). These missions must be rapid and precise, covering multiple kilometers in approximately 10-12 Earth days to complete mission objectives in one lunar light cycle. This calls for the ability to drive intentionally and efficiently to precise drilling destinations. Polar operations encounter low angle lighting; this creates shadows which confront robot operations with challenges in power production, thermal control, and operator situational awareness. This demands robust path planning for efficient mission planning and execution. The proposed work develops a computer-aided mission planning tool that balances the competing demands of efficient routes, scientific information gain, and rover constraints (e.g., kinematics, communication, power, thermal, and terrainability) to generate and analyze optimized routes between sequences of locations. Planner-computed statistics about the set of viable paths enable mission planners, scientists, and operators to efficiently select routes considering a range of priorities including risk, duration, and science return. This planner will serve an invaluable role in preplanning missions and as a tool for rapidly understanding the impact of changes in mission profile during the mission execution.
- API
Extreme Temperature, Rad-Hard Power Management ASIC Project
nasa-test-0.demo.socrata.com | Last Updated 2015-07-20T05:14:50.000ZRidgetop Group will design a rad-hard Application Specific Integrated Circuit (ASIC) for spacecraft power management that is functional over a temperature range of -230 to +130 <SUP>o</SUP>C. This ASIC is intended to work in conjunction with a Fuel Cell power system and battery back-up to provide uninterrupted power to critical modules in Space. Ridgetop will combine Radiation Hardening (RH) techniques with Large Scale Integration (LSI) methodologies to build a power management system for spacecraft applications onto a single monolithic circuit. The significance of this innovation is a single reliable component (ASIC) that will meet platform requirements for high voltage, wide operating temperature range, and radiation tolerance (minimum 100 krads Total Ionizing Doze (TID), 100 MeVcm2/mg Single Event Latchup (SEL). During phase 1, we will select two functional blocks from within a representative NASA power management system as test cases. Designs for these blocks will be developed and validated through SPICE circuit and radiation simulations, using technology files provided by a commercial foundry. In phase 2, Ridgetop will deliver working prototype integrated circuits (ICs) that meet and exceed the above requirements.
- API
Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics Project
nasa-test-0.demo.socrata.com | Last Updated 2015-07-20T05:23:03.000ZWe shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low voltage supply (~ 0.7 to 3V) of an advanced CMOS integrated circuit to the higher values (3-10V) required for integrated command/control/drive electronics for sensors, actuators and instrumentation. The high voltage capability is a result of our patented, CMOS compatible transistor technology that is radiation tolerant (TID>1 MRad), SEL immune and capable of wide temperature range operation (-196C to +150C). This new transistor technology has been demonstrated at multiple foundries and advanced device models are available for circuit design and simulation. The DC-DC boost converters will be integrated directly with the CMOS components to provide a single chip solution, greatly reducing the number of active and passive components that would otherwise be required. By allowing enhanced voltage operation in future CMOS technology nodes we will be avoiding many of the obsolescence problems facing NASA missions that are dependent upon commercial electronics. The circuits will be designed to operate in low temperature environments that experience wide temperature swings such as those found on the moon, Mars, Titan, Europa and comets.
- API
EDA - RLF geodata
performance.commerce.gov | Last Updated 2022-07-19T20:57:32.000Z - API
Bushfire Abatement Zone
www.data.act.gov.au | Last Updated 2020-06-19T21:08:40.000ZPart of the Strategic Bushfire Management Plan - Bushfire Abatement Zone Under the Emergencies Act, the Commissioner has declared a BAZ. The BAZ surrounds Canberra and extends west towards the Murrumbidgee River. It is a subset of the BPA, and was developed to identify rural areas where specific measures are required to reduce risk to life and property to the built-up area of Canberra. These measures include land-use constraints, planning requirements for land managers (both public and private) and pre-incident planning for bushfires. The BAZ will be reviewed as required to reflect changes in land use and tenure, and will be approved by the Commissioner. Creative Commons License Creative Common By Attribution 4.0 (Australian Capital Territory), Please read Data Terms and Conditions statement before use of the data.
- API
TRMM (TMPA-RT) Near Real-Time Precipitation L3 1 day 0.25 degree x 0.25 degree V7 (TRMM_3B42RT_Daily) at GES DISC
data.nasa.gov | Last Updated 2022-01-17T05:59:46.000ZTMPA (3B42RT_Daily) dataset have been discontinued as of Dec. 31, 2019, and users are strongly encouraged to shift to the successor IMERG dataset (doi: 10.5067/GPM/IMERGDE/DAY/06; 10.5067/GPM/IMERGDL/DAY/06). This daily accumulated precipitation product is generated from the Near Real-Time 3-hourly TRMM Multi-Satellite Precipitation Analysis TMPA (3B42RT). It is produced at the NASA GES DISC, as a value added product. Simple summation of valid retrievals in a grid cell is applied for the data day. The result is given in (mm). Although the grid is from 60S to 60N, the high latitudes (beyond 50S/N) near real-time retrievals are considered very unreliable and thus are screened out from the daily accumulations. The beginning and ending time for every daily granule are listed in the file global attributes, and are taken correspondingly from the first and the last 3-hourly granules participating in the aggregation. Thus the time period covered by one daily granule amounts to 24 hours, which can be inspected in the file global attributes. Counts of valid retrievals for the day are provided for every variable, making it possible to compute conditional and unconditional mean precipitation for grid cells where less than 8 retrievals for the day are available. Efforts have been made to make the format of this derived product as similar as possible to the new Global Precipitation Measurement CF-compliant file format. The latency of this derived daily product is about 7 hours after the UTC day is closed. Users should be mindful that the price for the short latency of these data is the reduced quality as compared to the research quality product. The information provided here on the TRMM mission, and on the original 3-hr 3B42 product, remain relevant for this derived product. Note, however, this product is in netCDF-4 format. The following describes the derivation in more details. The daily accumulation is derived by summing *valid* retrievals in a grid cell for the data day. Since the 3-hourly source data are in mm/hr, a factor of 3 is applied to the sum. Thus, for every grid cell we have Pdaily = 3 * SUM{Pi * 1[Pi valid]}, i=[1,Nf] Pdaily_cnt = SUM{1[Pi valid]} where: Pdaily - Daily accumulation (mm) Pi - 3-hourly input, in (mm/hr) Nf - Number of 3-hourly files per day, Nf=8 1[.] - Indicator function; 1 when Pi is valid, 0 otherwise Pdaily_cnt - Number of valid retrievals in a grid cell per day. Grid cells for which Pdaily_cnt=0, are set to fill value in the Daily files. Note that Pi=0 is a valid value. On occasion, the 3-hourly source data have fill values for Pi in a very few grid cells. The total accumulation for such grid cells is still issued, inspite of the likelihood that thus resulting accumulation has a larger uncertainty in representing the "true" daily total. These events are easily detectable using "counts" variables that contain Pdaily_cnt, whereby users can screen out any grid cells for which Pdaily_cnt less than Nf. There are various ways the accumulated daily error could be estimated from the source 3-hourly error. In this release, the daily error provided in the data files is calculated as follows. First, squared 3-hourly errors are summed, and then square root of the sum is taken. Similarly to the precipitation, a factor of 3 is finally applied: Perr_daily = 3 * { SUM[ (Perr_i * 1[Perr_i valid])^2 ] }^0.5 , i=[1,Nf] Ncnt_err = SUM( 1[Perr_i valid] ) where: Perr_daily - Magnitude of the daily accumulated error power, (mm) Ncnt_err - The counts for the error variable Thus computed Perr_daily represents the worst case scenario that assumes the error in the 3-hourly source data, which is given in mm/hr, is accumulating within the 3-hourly period of the source data and then during the day. These values, however, can easily be conveted to root mean square error estimate of the rainfall rate: rms_err = { (Perr_daily/3) ^2 / Ncnt
- API
NLDAS Noah Land Surface Model L4 Monthly 0.125 x 0.125 degree V002
nasa-test-0.demo.socrata.com | Last Updated 2015-07-20T04:56:05.000ZThis data set contains a series of land surface parameters simulated from the Noah land-surface model (LSM) for Phase 2 of the North American Land Data Assimilation System (NLDAS-2). The data are in 1/8th degree grid spacing and range from Jan 1979 to the present. The temporal resolution is monthly. The file format is WMO GRIB-1. The NLDAS-2 monthly Noah model data were generated from the NLDAS-2 hourly Noah model data, as monthly accumulation for rainfall, snowfall, subsurface runoff, surface runoff, total evapotranspiration, and snow melt, and monthly average for other variables. Monthly period of each month is from 00Z at start of the month to 23:59Z at end of the month, except the first month (Jan 1979) that starts from 00Z 02 Jan 1979. Also for the first month (Jan 1979), because the variables listed as instantaneous in the README file (http://hydro1.sci.gsfc.nasa.gov/data/s4pa/NLDAS/README.NLDAS2.pdf) do not have valid data exactly on 00Z 02 Jan 1979, and this one hour is not included in the average for this month only. Brief description about the NLDAS-2 monthly Noah model can be found from the GCMD DIF for GES_DISC_NLDAS_NOAH0125_H_V002 at http://gcmd.gsfc.nasa.gov/getdif.htm?GES_DISC_NLDAS_NOAH0125_H_V002. Details about the NLDAS-2 configuration of the Noah LSM can be found in Xia et al. (2012). The NLDAS-2 Noah monthly data contain fifty-two fields. The data set applies a user-defined parameter table to indicate the contents and parameter number. The GRIBTAB file (http://disc.sci.gsfc.nasa.gov/hydrology/grib_tabs/gribtab_NLDAS_NOAH.002.txt) shows a list of parameters for this data set, along with their Product Definition Section (PDS) IDs and units. For information about the vertical layers of the Soil Moisture Content (PDS 086), Soil Temperature (PDS 085), and Liquid Soil Moisture Content (PDS 151) please see the README Document at ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/NLDAS/README.NLDAS2.pdf or the GrADS ctl file at ftp://hydro1.sci.gsfc.nasa.gov/data/gds/NLDAS/NLDAS_NOAH0125_M.002.ctl.